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Over the last two decades, hardware in datacenters has shown diverging

trends. On the one hand, access link bandwidth has increased rapidly, with

datacenters now commonly supporting Terabit Ethernet (i.e., Ethernet with

speeds above 100Gbps). Modern network hardware is capable of supporting

microsecond-scale latency and multi-hundred-gigabit bandwidth. However, on

the other hand, the slowdown of Moore’s Law and the end of Dennard scaling

have resulted in total compute capacity (the number of CPU cores multiplied by

per-core performance) remaining largely stagnant. As a result, network perfor-

mance bottlenecks have shifted to the host network stacks, which are responsi-

ble for processing network packets to and from applications.

The first contribution of this dissertation is to build an in-depth understand-

ing the core challenges hindering existing host network stacks from fully lever-

aging modern network hardware. Our study reveals that the rapid increase in

network link bandwidth has made data movement overheads (such as transfer-

ring data from NICs to CPUs) a bottleneck for scaling single-core performance.

Typically, on the receiver side, after the NIC DMAs data to memory, the limited

memory bandwidth leads to poor CPU efficiency, as CPUs must stall while wait-

ing for data to be loaded from memory into CPU registers. We find out existing

optimization techniques like DDIO, which enables NICs to directly read/write

data from/to CPU caches, are unable to improve CPU efficiency. This is be-

cause the increase in bandwidth-delay products has outpaced the increase in



cache sizes, leading to high cache miss rates and poor CPU efficiency. With to-

day’s network stacks, multiple cores are needed to fully exploit the capabilities

of Terabit network hardware. However, our study shows that using multiple

cores, while saturating the link bandwidth, leads to even worse CPU efficiency

compared to the single-core case. This is because host resources like cache and

access link bandwidth are contended among different cores/applications.

The second contribution of this dissertation is to introduce NetChannel —a

new network stack architecture that enables host network stacks to leverage net-

work hardware without requiring application modifications. NetChannel dis-

aggregates network stacks into multiple loosely-coupled layers, allowing each

layer to scale and schedule across multiple cores independently. Using an end-

to-end NetChannel realization within the Linux network stack, we demonstrate

that NetChannel enables new operating points—(1) enabling a single applica-

tion thread to saturate multi-hundred-gigabit access link bandwidth; (2) en-

abling near-linear scalability for small message processing with an increasing

number of cores, independent of the number of application threads; and, (3)

enabling isolation of latency-sensitive applications, allowing them to maintain

µs-scale tail latency even when competing with throughput-bound applications

operating at near-line rate.

This thesis leaves open several interesting directions of future research: 1)

improving CPU efficiency by reducing both data movement and CPU process-

ing overheads; 2) extending NetChannel to function in more realistic scenar-

ios, allowing us to fully realize its potential; and 3) extending the study to

understand network stack overheads, not only in terms of CPU efficiency and

throughput but also network latency, as achieving low latency is also crucial for

applications.
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CHAPTER 1

INTRODUCTION

Figure 1.1: Example of a Datacenter Topology. One example of a datacenter topology
is the fat-tree topology. The fat-tree topology consists of three layers of switches: core,
aggregation, and edge, and supports full-bisection bandwidth [1]. Servers are directly
connected to the edge switches.

Today, datacenters are the infrastructure backbone for many applications

and services, ranging from machine learning [2] and big data analytics [3, 4]

to fast in-memory storage [5, 6], web services [7, 8], and video conferencing [9].

These applications often operate on a very large scale, requiring robust and effi-

cient datacenter infrastructure to support their needs. At their core, datacenters

are facilities housing end hosts (or servers) and network components (e.g., net-

work switches), which are interconnected to support the diverse needs of appli-

cations and services. One example of a datacenter topology is shown in Figure

1.1.

To ensure the good network performance, datacenter networking needs to

achieve low latency and high throughput for data transfers between servers.

Generally speaking, applications running in the datacenters can fall into one

of two categories: batching processing applications and interactive applica-

tions. Batch processing applications require high throughput for processing
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data in grouped batches. For example, in Meta’s deep learning recommendation

model training, achieving high performance requires continuously transmitting

a large volume of batched data to the training cluster within the datacenter net-

work [10]. On the other hand, interactive applications, designed to respond to

user inputs in real-time, require low latency to ensure a smooth user experience.

Typically, responding to a user query may involve multiple services. High tail

latency in one service can significantly impact overall performance. To maintain

a smooth user experience, a service may need to achieve tail latency of 100s of

microseconds, or even 10s of microseconds [11–16].

Over the last two decades, datacenter hardware technology trends have

evolved differently, presenting new challenges for datacenter networking to

achieve low latency and high throughput. On the one hand, access link band-

width has increased rapidly [17], with datacenters now commonly support-

ing Terabit Ethernet (Ethernet with speeds over 100 Gbps) [18]. Modern net-

work hardware is capable of supporting microsecond-scale latency and multi-

hundred-gigabit bandwidth. However, the slowdown of Moore’s Law and the

end of Dennard scaling have caused per-core performance to be largely stagnant

[17], requiring more CPU resources to be used for network packet processing.

These two trends essentially have pushed network performance bottlenecks to

the host network stacks.

1.1 Challenges in Host Network Stacks

The host network stack is a critical layer sitting between the network and the ap-

plications. The stack needs to handle tasks such as transferring data from/to ap-
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plications, controlling transmission rates, ensuring reliable data transfer across

the network, managing routing information, and sending/receiving packets

through network interface cards (NICs).

Specifically, the hardware technology trends within datacenters have led to

multiple challenges within host network stacks:

Poor CPU efficiency. While datacenters commonly support 100Gbps access

link bandwidth, the Linux network stack, one of the widely deployed network

stacks, can only achieve 40Gbps per core, even with all existing optimizations

(as will be shown in Chapter 2). This results in more CPU cycles being spent on

network stack processing, leaving fewer cycles available for running applica-

tions. To make things even worse, as network bandwidth continues to increase

rapidly, even more CPU cycles will be required for processing network packets

in the future.

High Tail Latency. As network hardware continues to evolve (e.g., evolving

processing speed of network switches and increasing network link bandwidth),

network round-trip time (RTT) reduces from millisecond-scale to hundreds of

microseconds or even tens of microseconds [11]. On the other hand, several

recent studies show that the Linux network stack suffers from millisecond-scale

tail latency [11–16]. This essentially makes the packet processing latency of host

network stacks a bottleneck for achieving low tail latency.

Poor resource provisioning. Given today’s stagnant CPU speed and the rapid

increase in network bandwidth, even after improving per-core CPU efficiency,

it is likely that multiple cores will still be needed to process network packets.

Ideally, the network stack is responsible for provisioning CPU cores to process

3



Figure 1.2: Challenges in Finding the Optimal Configuration. In this simple experi-
ment, we run iperf [19] applications on dedicated CPU cores using a 100Gbps NIC and
iperf has minimal application overhead. Even when applications are run on dedicated
CPU cores, throughput-per-core degrades with an increasing number of CPU cores.
As a result, it becomes very challenging for users to find the optimal configuration for
achieving the desired performance, as application performance can change during run-
time when other applications sharing the same server start or finish.

network packets, but today’s network stacks struggle with this task. This is be-

cause, the network stack was initially designed when a single CPU core could

keep up with network bandwidth, so there was no need to account for mul-

tiple cores in network packet processing. However, this is no longer the case.

This limitation has shifted the burden of resource provisioning onto users, leav-

ing them struggling to maintain optimal performance and forcing them into a

tedious optimization loop as new hardware and applications emerge.

To illustrate the challenges users face in exploiting network hardware, con-

sider the following case. Figure 1.2 illustrates the throughput-per-core that a

server can achieve with an increasing number of CPU cores; we observe that

throughput-per-core degrades: while a single core can achieve 40Gbps, two

cores only reach 70Gbps (the reasons for this will be discussed in Chapter 2).

When an application targets a specific throughput level (e.g., 80Gbps), it re-

quires users to conduct thorough benchmarking to find the optimal setup since

throughput-per-core is not stable. More importantly, this variability implies that
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application performance can change during runtime. For instance, even with

dedicated CPU cores, the performance of an application that uses two CPU

cores can further degrade from 70Gbps to 60Gbps when another application

starts using additional CPU cores to transmit data over the network. This uncer-

tainty makes it difficult for users to find the optimal configuration for efficiently

using network hardware, requiring them to reconfigure systems repeatedly dur-

ing runtime or overprovision resources. As network bandwidth continues to

increase, requiring more CPU cores to fully leverage network hardware, man-

aging CPU resources to meet application performance requirements becomes

increasingly challenging.

Unable to provide performance isolation. To save CPU cycles, cloud providers

today may co-locate multiple applications on the same CPU cores [20].

However, this approach can compromise application performance. For in-

stance, a latency-sensitive application (e.g., interactive applications) can achieve

microsecond-scale tail latency when running in isolation. But when co-located

with a throughput-bound application (e.g., batch-processing applications), the

tail latency inflates to millisecond-scale [21]. The network packet processing

of throughput-bound applications interferes with the performance of latency-

sensitive applications. Today’s network stacks are unable to isolate the network

packet processing of different applications when sharing the same CPU cores,

leading to performance degradation.
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1.2 Thesis

While network hardware can support µs-scale latency and hundreds of giga-

bits of bandwidth, designing end-host network stacks that can leverage these

capabilities efficiently has become a key open research problem.

This dissertation dives into understanding the fundamental limitations of

existing network stacks. Our study indicates: 1) With the rapid increase in ac-

cess link bandwidth, data movement overheads (e.g., moving data from NICs

to CPUs) become the bottleneck for scaling single-core performance; and with

today’s network stacks, we need multiple cores to exploit the capabilities of

Terabit network hardware. 2) However, as shown in §1.1, using multiple cores

further degrades the CPU efficiency. This is because host resources such as CPU

caches and access link bandwidth are contended, leading to performance degra-

dation.

This dissertation also introduces NetChannel, a new host network stack ar-

chitecture that allows host network stacks to manage multiple cores, fully lever-

aging the capabilities of modern network hardware. As shown in §1.1, today’s

host network stacks are unable to manage multiple cores effectively to exploit

network hardware; this dissertation finds out this inability stems from today’s

host network stacks’ dedicated, tightly integrated, and static packet processing

pipelines. Typically, host resources allocated to various parts of the network

stack pipelines, such as driver processing and transport layer processing, are

static and cannot be shared across different pipelines. Additionally, these dif-

ferent processing parts are closely integrated, making it difficult to dynamically

allocate resources. The dissertation demonstrates that by disaggregating host
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network stacks into multiple loosely-coupled layers and allowing each layer to

schedule and scale independently, one can enable the host network stacks to

manage multiple cores to exploit network hardware without requiring applica-

tion modification.

1.3 Contributions

In this section, we summarize the key contributions of this dissertation.

1.3.1 Understanding Host Network Stack Overheads

In Chapter 2, we dive into understanding the fundamental limitations of exist-

ing network stacks, focusing on CPU efficiency. The insights from our study

were surprising. Recent studies in networking and systems have explored the

use of hardware offloading to improve CPU efficiency at higher network band-

widths. However, our study revealed that this approach is not a one-size-fits-all

solution. The reason is that processing itself is not the only bottleneck leading to

CPU inefficiency. Data movement or I/O is another important bottleneck. For

example, on the receiver side, NICs DMA the received data to memory, and the

CPU needs to stall while waiting for data to move from memory to CPU regis-

ters, leading to poor CPU efficiency. We observed in long-flow processing that

data copy processing contributes to more than 50% of total CPU usage, and one

of the reasons leading to high data copy overheads is the high data movement

overheads. This results in a single core being inadequate to fully utilize the link

bandwidth. To reduce this overhead, a new data path has been designed: trans-
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ferring packets from NICs directly to the L3 CPU cache upon receiving them,

allowing the CPU to read data from the cache instead of memory (e.g., Intel’s

Data Direct I/O (DDIO)). Surprisingly, even with DDIO, we observed that a

single long flow experiences a high cache miss rate on the receiver side. Our in-

vestigation revealed the root cause: as bandwidth grows and CPUs struggle to

keep up, the host processing latency increases, leading to the amount of in-flight

data exceeding the cache’s capacity. This makes DDIO less effective, resulting

in higher cache miss rates and poor CPU efficiency. As the number of flows

increases, CPU inefficiency further degrades due to host resource contention

among flows (e.g. cache and access link bandwidth).

The study leaves open interesting research directions to optimize CPU ef-

ficiency for network packet processing; these may require re-architecting the

network hardware and even co-designing the network hardware and software

infrastructure, which will be further discussed in Chapter 4.

1.3.2 Rearchitecting Host Network Stacks for Terabit Ethernet

As discussed in §1.1, in the multi-core context, it is challenging for network op-

erators and application users today to find the optimal configuration to exploit

network hardware during runtime. We realize that this challenge arises from the

current network stack’s inability to fully leverage the hardware in a transparent

manner, thereby shifting the burden onto network operators and users. We find

out this inability stems from today’s host network stack’s dedicated, tightly in-

tegrated, and static packet processing pipelines. To address this challenge, in

Chapter 3, we present NetChannel, a new host network stack architecture for

Terabit Ethernet. NetChannel disaggregates the network stack into loosely cou-
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pled layers, enabling the dynamic scaling and scheduling of each layer across

CPU cores to exploit the hardware. We demonstrated that NetChannel offers

several new operating points that were previously unachievable without mod-

ifying network hardware: 1) By transparently scaling data copy processing,

NetChannel empowers a single application thread to saturate multi-hundred gi-

gabit access link bandwidth (e.g., 200Gbps). 2) Through scaling transport proto-

col processing, NetChannel achieves nearly linear scalability for small message

processing as the number of cores increases. 3) NetChannel achieves perfor-

mance isolation for latency-sensitive applications, allowing them to maintain

low-latency performance even they are colocated with throughput-bound ap-

plications operating at near-line rates. Such isolation is achieved by isolating

the packet processing for different types of applications.
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CHAPTER 2

UNDERSTANDING NETWORK STACK OVERHEADS

Traditional end-host network stacks are struggling to keep up with rapidly

increasing datacenter access link bandwidths due to their unsustainable CPU

overheads. Motivated by this, our community is exploring a multitude of so-

lutions for future network stacks: from Linux kernel optimizations to partial

hardware offload to clean-slate userspace stacks to specialized host network

hardware. The design space explored by these solutions would benefit from

a detailed understanding of CPU inefficiencies in existing network stacks.

In this chapter, we present measurement and insights for Linux kernel net-

work stack performance for 100Gbps access link bandwidths. Our study reveals

that such high bandwidth links, coupled with relatively stagnant technology

trends for other host resources (e.g., core speeds and count, cache sizes, NIC

buffer sizes, etc.), mark a fundamental shift in host network stack bottlenecks.

For instance, we find that a single core is no longer able to process packets at

line rate, with data copy from kernel to application buffers at the receiver be-

coming the core performance bottleneck. In addition, increase in bandwidth-

delay products have outpaced the increase in cache sizes, resulting in inefficient

DMA pipeline between the NIC and the CPU. Finally, we find that traditional

loosely-coupled design of network stack and CPU schedulers in existing oper-

ating systems becomes a limiting factor in scaling network stack performance

across cores. Based on insights from this chapter, we will discuss implications

to design of future operating systems, network protocols, and host hardware in

Chapter 4.
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2.1 Overview

The slowdown of Moore’s Law, the end of Dennard’s scaling, and the rapid

adoption of high-bandwidth links have brought traditional host network stacks

at the brink of a breakdown—while datacenter access link bandwidths (and

resulting computing needs for packet processing) have increased by 4 − 10×

over the past few years, technology trends for essentially all other host re-

sources (including core speeds and counts, cache sizes, NIC buffer sizes, etc.)

have largely been stagnant. As a result, the problem of designing CPU-

efficient host network stacks has come to the forefront, and our community

is exploring a variety of solutions, including Linux network stack optimiza-

tions [22–27], hardware offloads [28–31], RDMA [32–34], clean-slate userspace

network stacks [12, 13, 16, 35, 36], and even specialized host network hard-

ware [37]. The design space explored by these solutions would benefit from a

detailed understanding of CPU inefficiencies of traditional Linux network stack.

Building such an understanding is hard because the Linux network stack is not

only large and complex, but also comprises of many components that are tightly

integrated into an end-to-end packet processing pipeline.

Several recent papers present a preliminary analysis of Linux network stack

overheads for short flows [16, 25, 26, 38, 39]. This fails to provide a complete

picture due to two reasons. First, for datacenter networks, it is well-known that

an overwhelmingly large fraction of data is contained in long flows [40–42];

thus, even if there are many short flows, most of the CPU cycles may be spent

in processing packets from long flows. Second, datacenter workloads contain

not just short flows or long flows in exclusion, but a mixture of different flow
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sizes composed in a variety of traffic patterns; as we will demonstrate, CPU

characteristics change significantly with varying traffic patterns and mixture of

flow sizes.

This chapter presents measurement and insights for Linux kernel network

stack performance for 100Gbps access link bandwidths. Our key findings are:

High-bandwidth links result in performance bottlenecks shifting from proto-

col processing to data copy. Modern Linux network stack can achieve ∼42Gbps

throughput-per-core by exploiting all commonly available features in commod-

ity NICs, e.g., segmentation and receive offload, jumbo frames, and packet steer-

ing. While this throughput is for the best-case scenario of a single long flow, the

dominant overhead is consistent across a variety of scenarios—data copy from

kernel buffers to application buffers (e.g., > 50% of total CPU cycles for a single

long flow). One critical factor leading to such substantial data copy overheads

is the inefficient data movements or I/O: the CPU has to stall while waiting

for data to be loaded from memory or cache into the CPU registers. This is in

sharp contrast to previous studies on short flows and/or low-bandwidth links,

where protocol processing was shown to be the main bottleneck. We also ob-

serve receiver-side packet processing to become a bottleneck much earlier than

the sender-side.

• Implications. Emerging zero-copy mechanisms from the Linux networking

community [23, 24] may alleviate data copy overheads, and may soon al-

low the Linux network stack to process as much as 100Gbps worth of data

using a single core. Integration of other hardware offloads like I/OAT [43]

that transparently mitigate data copy overheads could also lead to perfor-

mance improvements. Hardware offloads of transport protocols [30, 32] and
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userspace network stacks [16, 26, 35] that do not provide zero-copy interfaces

may improve throughput in microbenchmarks, but will require additional

mechanisms to achieve CPU efficiency when integrated into an end-to-end

system. On the other hand, zero-copy technologies might not be a panacea,

as single-core CPU efficiency can still be constrained by I/O bandwidth per

CPU core. For example, if all the data needs to be accessed from memory,

single-core throughput will be limited by the memory bandwidth per core,

which is significantly less than the expected network bandwidth in the near

future.

The reducing gap between bandwidth-delay product (BDP) and cache sizes

leads to suboptimal throughput. To reduce data movement or I/O overheads,

modern CPU support for Direct Cache Access (DCA) (e.g., Intel DDIO [44]) al-

lows NICs to DMA packets directly into L3 cache; given its promise, DDIO is

enabled by default in most systems. While DDIO is expected to improve per-

formance during data copy, rather surprisingly, we observe that it suffers from

high cache miss rates (49%) even for a single flow, thus providing limited perfor-

mance gains. Our investigation revealed that the reason for this is quite subtle:

host processing becoming a bottleneck results in increased host latencies; com-

bined with increased access link bandwidths, BDP values increase. This increase

outpaces increase in L3 cache sizes—data is DMAed from the NIC to the cache,

and for larger BDP values, cache is rapidly overwritten before the application

performs data copy of the cached data. As a result, we observe as much as 24%

drop in throughput-per-core.

• Implications. We need new mechanisms to minimize delay between packet re-

ception and subsequent data copy to minimize cache miss rates during data
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copy. One possibility is to rearchitect host network stacks to enable indepen-

dent scaling of processing capacity for individual layers (e.g., enabling multi-

ple cores to perform data copy for a single flow) to overcome bottlenecks. In

addition, window size tuning should take into account not only traditional

metrics like latency and throughput, but also L3 sizes. To further reduce host

processing latency, we may also need to design new DMA pipelines, such

as DMAing data closer to CPUs, into caches like L1 or L2, or even into CPU

registers [45, 46].

Host resource sharing considered harmful. We observe as much as 66% differ-

ence in throughput-per-core across different traffic patterns (single flow, one-to-

one, incast, outcast, and all-to-all) due to undesirable effects of multiple flows

sharing host resources. For instance, multiple flows on the same NUMA node

(thus, sharing the same L3 cache) make the cache performance even worse—

the data DMAed by the NIC into the cache for one flow is polluted by the

data DMAed by the NIC for other flows, before application for the first flow

could perform data copy. Multiple flows sharing host resources also results in

packets arriving at the NIC belonging to different flows; this, in turn, results in

packet processing overheads getting worse since existing optimizations (e.g., co-

alescing packets using generic receive offload) lose a chance to aggregate larger

number of packets. This increases per-byte processing overhead, and eventually

scheduling overheads.

• Implications. In the Internet and in early-generation datacenter networks, per-

formance bottlenecks were in the network core; thus, multiple flows “shar-

ing” host resources did not have performance implications. However, for

high-bandwidth networks, such is no longer the case—if the goal is to design
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CPU-efficient network stacks, one must carefully orchestrate host resources

so as to minimize contention between active flows. Recent receiver-driven

transport protocols [47, 48] can be extended to reduce the number of concur-

rently scheduled flows, potentially enabling high CPU efficiency for future

network stacks.

The need to revisit host layering and packet processing pipelines. We observe

as much as ∼43% reduction in throughput-per-core compared to the single flow

case when applications generating long flows share CPU cores with those gen-

erating short flows. This is both due to increased scheduling overheads, and

also due to high CPU overheads for short flow processing. In addition, short

flows and long flows suffer from very different performance bottlenecks—the

former have high packet processing overheads while the latter have high data

copy overheads; however, today’s network stacks use the same packet process-

ing pipeline independent of the type of the flow. Finally, we observe ∼20% ad-

ditional drop in throughput-per-core when applications generating long flows

are running on CPU cores that are not in the same NUMA domain as the NIC

(due to additional data copy overheads).

• Implications. Design of CPU schedulers independent of the network layer

was beneficial for independent evolution of the two layers; however, with

performance bottlenecks shifting to hosts, we need to revisit such a separa-

tion. For instance, application-aware CPU scheduling (e.g., scheduling appli-

cations that generate long flows on NIC-local NUMA node, scheduling long-

flow and short-flow applications on separate CPU cores, etc.) are required

to improve CPU efficiency. We should also rethink host packet processing

pipelines—unlike today’s designs that use the same pipeline for short and
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long flows, achieving CPU efficiency requires application-aware packet pro-

cessing pipelines.

Our study not only corroborates many exciting ongoing activities in systems,

networking and architecture communities on designing CPU-efficient host net-

work stacks, but also highlights several interesting avenues for research in de-

signing future operating systems, network protocols and network hardware.

We discuss them in Chapter 4.

Before diving deeper, we outline several caveats of our study. First, our

study uses one particular host network stack (the Linux kernel) running atop

one particular host hardware. While we focus on identifying trends and draw-

ing general principles rather than individual data points, other combinations

of host network stacks and hardware may exhibit different performance char-

acteristics. Second, our study focuses on CPU utilization and throughput; host

network stack latency is another important metric, but requires exploring many

additional bottlenecks in end-to-end system (e.g., network topology, switches,

congestion, etc.); a study that establishes latency bottlenecks in host network

stacks, and their contribution to end-to-end latency remains an important and

relatively less explored space. Third, kernel network stacks evolve rapidly; any

study of our form must fix a version to ensure consistency across results and

observations; nevertheless, our preliminary exploration [49] suggests that the

most recent Linux kernel exhibits performance very similar to our results. Fi-

nally, our goal is not to take a position on how future network stacks will evolve

(in-kernel, userspace, hardware), but rather to obtain a deeper understanding of

a highly mature and widely deployed network stack.
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2.2 Preliminaries

The Linux network stack tightly integrates many components into an end-to-

end pipeline. We start this section by reviewing these components (§2.2.1). We

also discuss commonly used optimizations, and corresponding hardware of-

floads supported by commodity NICs. A more detailed description is presented

in [49]. We then summarize the methodology used in our study (§2.2.2).

2.2.1 End-to-End Data Path

The Linux network stack has slightly different data paths for the sender-side

(application to NIC) and the receiver-side (NIC to application), as shown in

Fig. 2.1. We describe them separately.

Component Description

Data copy From user space to kernel space, and vice versa.

TCP/IP All the packet processing at TCP/IP layers.

Netdevice subsystem Netdevice and NIC driver operations (e.g., NAPI
polling, GSO/GRO, qdisc, etc.).

skbmanagement Functions to build, split, and release skb.

Memory de-/alloc skb de-/allocation and page-related operations.

Lock/unlock Lock-related operations (e.g., spin locks).

Scheduling Scheduling/context-switching among threads.

Others All the remaining functions (e.g., IRQ handling).

Table 2.1: CPU usage taxonomy. The components are mapped into layers as shown in
Fig. 2.1.

Sender-side. When the sender-side application executes a write system call, the
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Figure 2.1: Sender and receiver-side data path in the Linux network stack. See §2.2.1
for description.

kernel initializes socket buffers (skbs). For the data referenced by the skbs, the

kernel then performs data copy from the userspace buffer to the kernel buffer.

The skbs are then processed by the TCP/IP layer. When ready to be transmit-

ted (e.g., congestion control window/rate limits permitting), the data is pro-

cessed by the network subsystem; here, among other processing steps, skbs are

segmented into Maximum Transmission Unit (MTU) sized chunks by Generic

Segmentation offload (GSO) and are enqueued in the NIC driver Tx queue(s).

Most commodity NICs also support hardware offload of packet segmentation,

referred to as TCP segmentation offload (TSO); see more details in [49]. Finally,

the driver processes the Tx queue(s), creating the necessary mappings for the

NIC to DMA the data from the kernel buffer referenced by skbs. Importantly,

almost all sender-side processing in today’s Linux network stack is performed
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at the same core as the application.

Receiver-side. The NIC has a number of Rx queues and a per-Rx queue page-

pool from which DMA memory is allocated (backed by the kernel pageset). The

NIC also has a configurable number of Rx descriptors, each of which contains a

memory address that the NIC can use to DMA received frames. Each descriptor

is associated with enough memory for one MTU-sized frame.

Upon receiving a new frame, the NIC uses one of the Rx descriptors, and

DMAs the frame to the kernel memory associated with the descriptor. Ordinar-

ily, the NIC DMAs the frame to DRAM; however, modern CPUs have support

for Direct Cache Access (DCA) (e.g., using Intel’s Data Direct I/O technology

(DDIO) technology [44]) that allows NIC to DMA the frames directly to the L3

cache. DCA enables applications to avoid going to DRAM to access the data.

Asynchronously, the NIC generates an Interrupt ReQuests (IRQ) to inform

the driver of new data to be processed. The CPU core that processes the

IRQ is selected by the NIC using one of the hardware steering mechanisms;

see Table 2.2 for a summary, and [49] for details on how receiver-side flow

steering techniques work. Upon receiving an IRQ, the driver triggers NAPI

polling [50], that provides an alternative to purely interrupt-based network

layer processing—the system busy polls on incoming frames until a certain

number of frames are received or a timer expires1. This reduces the number

of IRQs, especially for high-speed networks where incoming data rate is high.

While busy polling, the driver allocates an skb for each frame, and makes a

cross reference between the skb and the kernel memory where the frame has

1These NAPI parameters can be tuned via net.core.netdev_budget and
net.core.netdev_budget_usecs kernel parameters, which are set to 300 and 2ms by de-
fault in our Linux distribution.
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Mechanism Description

Receive Packet Steering (RPS) Use the 4-tuple hash for core selection.

Receive Flow Steering (RFS) Find the core that the application is running on.

Receive Side Steering (RSS) Hardware version of RPS supported by NICs.

accelerated RFS (aRFS) Hardware version of RFS supported by NICs.

Table 2.2: Receiver-side flow steering techniques.

been DMAed. If the NIC has written enough data to consume all Rx descrip-

tors, the driver allocates more DMA memory using the page-pool and creates

new descriptors.

The network subsystem then attempts to reduce the number of skbs by

merging them using Generic Receive Offload (GRO), or its corresponding hard-

ware offload Large Receive Offload (LRO); see discussion in [49]. Next, TCP/IP

processing is scheduled on one of the CPU cores using the flow steering mech-

anism enabled in the system (see Table 2.2). Importantly, with aRFS enabled,

all the processing (the IRQ handler, TCP/IP and application) is performed on

the same CPU core. Once scheduled, the TCP/IP layer processing is performed

and all in-order skbs are appended to the socket’s receive queue. Finally, the

application thread performs data copy of the payload in the skbs in the socket

receive queue to the userspace buffer. Note that at both the sender-side and the

receiver-side, data copy of packet payloads is performed only once (when the

data is transferred between userspace and kernel space). All other operations

within the kernel are performed using metadata and pointer manipulations on

skbs, and do not require data copy.

20



2.2.2 Measurement Methodology

In this subsection, we briefly describe our testbed setup, experimental scenarios,

and measurement methodology.

Testbed setup. To ensure that bottlenecks are at the network stack, we setup

a testbed with two servers directly connected via a 100Gbps link (without any

intervening switches). Both of our servers have a 4-socket NUMA-enabled In-

tel Xeon Gold 6128 3.4GHz CPU with 6 cores per socket, 32KB/1MB/20MB

L1/L2/L3 caches, 256GB RAM, and a 100Gbps Mellanox ConnectX-5 Ex NIC

connected to one of the sockets. Both servers run Ubuntu 16.04 with Linux

kernel 5.4.43. Unless specified otherwise, we enable DDIO, and disable hyper-

threading and IOMMU in our experiments.

Experimental scenarios. We study network stack performance using five stan-

dard traffic patterns (Fig. 2.2)—single flow, one-to-one, incast, outcast, and all-

to-all—using workloads that comprise long flows, short flows, and even a mix

of long and short flows. For generating long flows, we use a standard network

benchmarking tool, iPerf [19], which transmits a flow from sender to receiver;

for generating short flows, we use netperf [51] that supports ping-pong style

RPC workloads. Both of these tools perform minimal application-level process-

ing, which allows us to focus on performance bottlenecks in the network stack

(rather than those arising due to complex interactions between applications and

the network stack); many of our results may have different characteristics if ap-

plications were to perform additional processing. We also study the impact of

in-network congestion, impact of DDIO and impact of IOMMU. We use Linux’s

default congestion control algorithm, TCP Cubic, but also study impact of dif-
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Figure 2.2: Traffic patterns used in our study. (a) Single flow from one sender
core to one receiver core. (b) One flow from each sender core to a unique receiver
core. (c) One flow from each sender core, all to a single receiver core. (d) One
flow to each receiver core all from a single sender core. (e) One flow between
every pair of sender and receiver cores.

ferent congestion control protocols. For each scenario, we describe the setup

inline.

Performance metrics. We measure total throughput, total CPU utilization

across all cores (using sysstat [52], which includes kernel and application pro-

cessing), and throughput-per-core—ratio of total throughput and total CPU uti-

lization at the bottleneck (sender or receiver). To perform CPU profiling, we use

the standard sampling-based technique to obtain a per-function breakdown of

CPU cycles [53]. We take the top functions that account for ∼95% of the CPU

utilization. By examining the kernel source code, we classify these functions

into 8 categories as described in Table 2.1.
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2.3 Linux Network Stack Overheads

We now evaluate the Linux network stack overheads for a variety of scenarios,

and present detailed insights on observed performance.

2.3.1 Single Flow

We start with the case of a single flow between the two servers, each running an

application on a CPU core in the NIC-local NUMA node. We find that, unlike

the Internet and early incarnations of datacenter networks where the through-

put bottlenecks were primarily in the core of the network (since a single CPU

was sufficient to saturate the access link bandwidth), high-bandwidth networks

introduce new host bottlenecks even for the simple case of a single flow.

Before diving deeper, we make a note on our experimental configuration for

the single flow case. When aRFS is disabled, obtaining stable and reproducible

measurements is difficult since the default RSS mechanism uses hash of the 4-

tuple to determine the core for IRQ processing (§2.2.1). Since the 4-tuple can

change across runs, the core that performs IRQ processing could be: (1) the ap-

plication core; (2) a core on the same NUMA node; or, (3) a core on a different

NUMA node. The performance in each of these three cases is different, resulting

in non-determinism. To ensure deterministic measurements, when aRFS is dis-

abled, we model the worst-case scenario (case 3): we explicitly map the IRQs to

a core on a NUMA node different from the application core. For a more detailed

analysis of other possible IRQ mapping scenarios, see [49].
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Figure 2.3: Linux network stack performance for the case of a single flow. (a)
Each column shows throughput-per-core achieved for different combinations
of optimizations. Within each column, optimizations are enabled incrementally,
with each colored bar showing the incremental impact of enabling the corre-
sponding optimization. (b) Sender and Receiver total CPU utilization as all
optimizations are enabled incrementally. Independent of the optimizations en-
abled, receiver-side CPU is the bottleneck. (c, d) With all optimizations enabled,
data copy is the dominant consumer of CPU cycles. (e) Increase in NIC ring
buffer size and increase in TCP Rx buffer size result in increased cache miss
rates and reduced throughput. (f) Network stack processing latency from NAPI
to start of data copy increases rapidly beyond certain TCP Rx buffer sizes. See
§2.3.1 for description.
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A single core is no longer sufficient. For 10−40Gbps access link bandwidths, a

single thread was able to saturate the network bandwidth. However, such is no

longer the case for high-bandwidth networks: as shown in Fig. 2.3(a), even with

all optimization enabled, Linux network stack achieves throughput-per-core of

∼42Gbps2. Both Jumbo frames3 and TSO/GRO reduce the per-byte processing

overhead as they allow each skb to bring larger payloads (up to 9000B and 64KB

respectively). Jumbo frames are useful even when GRO is enabled, because

the number of skbs to merge is reduced with a larger MTU size, thus reducing

the processing overhead for packet aggregation in software. aRFS, along with

DCA, generally improves throughput by enabling applications on the NIC-local

NUMA node cores to perform data copy directly from L3 cache.

Receiver-side CPU is the bottleneck. Fig. 2.3(b) shows the overall CPU utiliza-

tion at sender and receiver sides. Independent of the optimizations enabled,

receiver-side CPU is the bottleneck. There are two dominant overheads that

create the gap between sender and receiver CPU utilization: (1) data copy and

(2) skb allocation. First, when aRFS is disabled, frames are DMAed to remote

NUMA memory at the receiver; this causes data copy across different NUMA

nodes, increasing per-byte data copy overhead as the CPU stalls while waiting

for data to load from remote NUMA. This is not an issue on the sender-side since

the local L3 cache is warm with the application send buffer data. Enabling aRFS

alleviates this issue reducing receiver-side CPU utilization by as much as 2×

2We observe a maximum throughput-per-core of upto 55Gbps, either by tuning NIC Rx
descriptors and TCP Rx buffer size carefully (See Fig. 2.3(e)), or using LRO instead of GRO
(See [49]). However, such parameter tuning is very sensitive to the hardware setup, and so we
leave them to their default values for all other experiments. Moreover, the current implementa-
tion of LRO causes problems in some scenarios as it might discard important header data, and
so is often disabled in the real world [54]. Thus we use GRO as the receive offload mechanism
for the rest of our experiments.

3Using larger MTU size (9000 bytes) as opposed to the normal (1500 bytes).
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(right-most bar in Fig. 2.3(b)) compared to the case when no optimizations are

enabled; however, CPU utilization at the receiver is still higher than the sender.

Second, when TSO is enabled, the sender is able to allocate large-sized skbs.

The receiver, however, allocates MTU-sized skbs at device driver and then the

skbs are merged at GRO layer. Therefore, the receiver incurs higher overheads

for skb allocation.

Where are the CPU cycles going? Figs. 2.3(c) and 2.3(d) show the CPU usage

breakdowns of sender- and receiver-side for each combination of optimizations.

With none of the optimizations, CPU overheads mainly come from TCP/IP pro-

cessing as per-skb processing overhead is high (here, skb size is 1500B at both

sides4). When aRFS is disabled, lock overhead is high at the receiver-side be-

cause of the socket contention due to the application context thread (recv sys-

tem call) and the interrupt context thread (softirq) attempting to access the same

socket instance.

These packet processing overheads are mitigated with several optimizations:

TSO allows using large-sized skb at the sender-side, reducing both TCP/IP pro-

cessing and Netdevice subsystem overheads as segmentation is offloaded to

the NIC (Fig. 2.3(c)). On the receiver-side, GRO reduces the CPU usage by re-

ducing the number of skbs, passed to the upper layer, so TCP/IP processing

and lock/unlock overheads are reduced dramatically, at the cost of increas-

ing the overhead of the network device subsystem where GRO is performed

(Fig. 2.3(d)). This GRO cost can be reduced by 66% by enabling Jumbo frames as

explained above. These reduced packet processing overheads lead to through-

put improvement, and the main overhead is now shifted to data copy, which

4Linux kernel 4.17 onwards, GSO is enabled by default. We modified the kernel to disable
GSO in “no optimization” experiments to evaluate benefits of skb aggregation.
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takes almost 49% of total CPU utilization at the receiver-side when GRO and

Jumbo frames are enabled. A major reason for high data copy overheads is data

movement or I/O, unlike short flows where performance bottlenecks are due

to per-packet CPU processing, as prior work shows [16]. Here, the main issue

is the CPU stalling while waiting for data to load from memory, causing high

CPU overheads.

Once aRFS is enabled, co-location of the application context thread and the

IRQ context thread at the receiver leads to improved cache and NUMA locality.

The effects of this are two-fold:

1. Since the application thread runs on the same NUMA node as the NIC, it can

now perform data copy directly from the L3 cache (DMAed by the NIC via

DCA) to reduce CPU stalling time.

2. skbs are allocated in the softirq thread and freed in the application context

thread (once data copy is done). Since the two are co-located, memory deallo-

cation overhead reduces. This is because page free operations to local NUMA

memory are significantly cheaper than those for remote NUMA memory.

Even a single flow experiences high cache misses. Although aRFS allows ap-

plications to perform data copy from local L3 cache, we observe as much as

49% cache miss rate in this experiment. This is surprising since, for a single

flow, there is no contention for L3 cache capacity. To investigate this further, we

varied various parameters to understand their effect on cache miss rate. Among

our experiments, varying the maximum TCP receive window size, and the num-

ber of NIC Rx descriptors revealed an interesting trend.

Fig. 2.3(e) shows the variation of throughput and L3 cache miss rate with
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varying number of NIC Rx descriptors and varying TCP Rx buffer size5. We

observe that, with increase in either of the number of NIC Rx descriptors or the

TCP buffer size, the L3 cache miss increases and correspondingly, the through-

put decreases. We have found two reasons for this phenomenon: (1) BDP values

being larger than the L3 cache capacity; and (2) suboptimal cache utilization.

To understand the first one, consider an extreme case of large TCP Rx buffer

sizes. In such a case, TCP will keep BDP worth of data in flight, where BDP

is defined as the product of access link bandwidth and latency (both network

and host latency). It turns out that large TCP buffers can cause a significant

increase in host latency, especially when the core processing packets becomes

a bottleneck. In addition to scheduling delay of IRQ context and application

threads, we observe that each packet observe large queueing behind previous

packets. We measure the delay between frame reception and start of data copy

by logging the timestamp when NAPI processing for an skb happens, and the

timestamp when the data copy of it starts, and measure the difference between

the two. Fig. 2.3(f) shows the average and 99th percentile delays observed with

varying TCP Rx buffer size. As can be seen, the delays rise rapidly with increas-

ing TCP Rx buffer size beyond 1600KB. Given that DCA cache size is limited6,

this increase in latency has significant impact: since TCP buffers and BDP val-

ues are large, NIC always has data to DMA; thus, since the data DMAed by the

NIC is not promptly copied to userspace buffers, it is evicted from the cache

when NIC performs subsequent DMAs (if the NIC runs out of Rx descriptors,

the driver replenishes the NIC Rx descriptors during NAPI polling). As a result,

cache misses increase and throughput reduces. When TCP buffer sizes are large

5The kernel uses an auto-tuning mechanism for the TCP Rx socket buffer size with the goal
of maximizing throughput. In this experiment, we override the default auto-tuning mechanism
by specifying an Rx buffer size.

6DCA can only use 18% (∼3 MB) of the L3 cache capacity in our setup.
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enough, this problem persists independent of NIC ring buffer sizes.

To understand the second reason, consider the other extreme where TCP

buffer sizes are small but NIC ring buffer sizes are large. We believe cache

misses in this case might be due to an imperfect cache replacement policy

and/or cache’s complex addressing, resulting in suboptimal cache utilization;

recent work has observed similar phenomena, although in a different con-

text [55, 56]. When there are a large number of NIC Rx descriptors, there is a

correspondingly larger number of memory addresses available for the NIC to

DMA the data. Thus, even though the total amount of in-flight data is smaller

than the cache capacity, the likelihood of a DCA write evicting some previously

written data increases with the number of NIC Rx descriptors. This limits the

effective utilization of cache capacity, resulting in high cache miss rates and low

throughput-per-core.

Between these two extremes, both of the factors contribute to the observed

performance in Fig. 2.3(e). Indeed, in our setup, DCA cache capacity is ∼3MB

and hence TCP buffer size of 3200KB and fewer than 512 NIC Rx descrip-

tors (512 × 9000 bytes ≈ 4MB) delivers the optimal single-core throughput of

∼55Gpbs. An interesting observation here is that the default auto-tuning mech-

anism used in the Linux kernel network stack today is unaware of DCA effects,

and ends up overshooting beyond the optimal operating point.

DCA limited to NIC-local NUMA nodes. In our analysis so far, the application

was run on a CPU core on the NIC-local NUMA node. We now examine the

impact of running the application on a NIC-remote NUMA node for the same

single flow experiment. Fig. 2.4 shows the resulting throughput-per-core and L3

cache miss rate relative to the NIC-local case (with all optimizations enabled in
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Figure 2.4: Linux network stack performance for the case of a single flow on
NIC-remote NUMA node. When compared to the NIC-local NUMA node case,
single flow throughput-per-core drops by ∼20%.

both cases). When the application runs on NIC-remote NUMA node, we see a

significant increase in L3 cache miss rate and∼20% drop in throughput-per-core.

Since aRFS is enabled, the NIC DMAs frames to the target CPU’s NUMA node

memory. However, because the target CPU core is on a NIC-remote NUMA

node, DCA is unable to push the DMAed frame data into the corresponding L3

cache [44]. As a result, cache misses increase and throughput-per-core drops.

2.3.2 Increasing Contention via One-to-one

We now evaluate the Linux network stack with higher contention for the net-

work bandwidth. Here, each sender core sends a flow to one unique receiver

core, and we increase the number of core/flows from 1 to 24. While each flow

still has the entire host core for itself, this scenario introduces two new chal-

lenges compared to the single-flow case: (1) network bandwidth becomes satu-

rated as multiple cores are used; and (2) flows run on both NIC-local and NIC-

remote NUMA nodes (our servers have 6 cores on each NUMA node).
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Figure 2.5: Linux network stack performance for one-to-one traffic pattern.
(a) Each column shows throughput-per-core achieved for different number of
flows. At 8 flows, the network is saturated, however, throughput-per-core de-
creases with more flows. (b, c) With all optimizations enabled, as the number
of flows increase, the fraction of CPU cycles spent in data copy decreases. On
the receiver-side, network saturation leads to lower memory management over-
head (due to better page recycling) and higher scheduling overhead (due to fre-
quent idling). The overall receiver-side CPU utilizations for x= 1, 8, 16 and 24
cases are, 1, 3.75, 5.21 and 6.58 cores, respectively. See §2.3.2 for description.

Similar to §2.3.1, to obtain deterministic measurements when aRFS is dis-

abled, we explicitly map IRQs for individual applications to a unique core on a

different NUMA node.

Host optimizations become less effective with increasing number of flows.

Fig. 2.5(a) shows that, as the number of flows increases, throughput-per-core

decreases by 64% (i.e., 15Gbps at 24 flows), despite each core processing only
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a single flow. This is because of reduced effectiveness of all optimizations. In

particular, when compared to the single flow case, the effectiveness of aRFS

reduces by as much as 75% for the 24-flow case; this is due to reduced L3 cache

locality for data copy for NIC-local NUMA node cores (all cores share L3 cache),

and also due to some of the flows running on NIC-remote NUMA nodes (that

cannot exploit DCA, see §2.3.1, Fig. 2.4). The effectiveness of GRO also reduces:

since packets at the receiver are now interleaved across flows, there are fewer

opportunities for aggregation; this will become far more prominent in the all-

to-all case, and is discussed in more depth in §2.3.5.

Processing overheads shift with network saturation. As shown in Fig. 2.5(a),

at 8 flows, the network link becomes the bottleneck, and throughput ends up

getting fairly shared among all cores. Fig. 2.5(c) shows that bottlenecks shift in

this regime: scheduling overhead increases and memory management overhead

decreases. Intuitively, when the network is saturated, the receiver cores start

to become idle at certain times—threads repeatedly go to sleep while waiting

for data, and wake up when new data arrives; this results in increased context

switching and scheduling overheads. This effect becomes increasingly promi-

nent with increase in number of flows (Fig. 2.5(b), Fig. 2.5(c)), as the CPU uti-

lization per-core decreases.

To understand reduction in memory alloc/dealloc overheads, we observe

that the kernel page allocator maintains per-core pageset that includes a cer-

tain number of free pages. Upon an allocation request, pages can be fetched

directly from the pageset, if available; otherwise the global free-list needs to be

accessed (which is a more expensive operation). When multiple flows share the

access link bandwidth, each core serves relatively less amount of traffic com-
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Figure 2.6: Linux network stack performance for incast traffic pattern. (a) Each
column shows throughput-per-core for different number of flows (receiver core
is bottlenecked in all cases). Total throughput decreases with increase in the
number of flows. (b) With all optimizations enabled, the fraction of CPU cycles
used by each component does not change significantly with number of flows.
See [49] for sender-side CPU breakdown. (c) Receiver-side cache miss rate in-
creases with number of flows, resulting in higher per-byte data copy overhead,
and reduced throughput-per-core. See §2.3.3 for description.

pared to the single flow case. This allows used pages to be recycled back to

the pageset before it becomes empty, hence reducing the memory allocation

overhead (Fig. 2.5(c)).
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2.3.3 Increasing Receiver Contention via Incast

We now create additional contention at the receiver core using an incast traf-

fic pattern, varying number of flows from 1 to 24 (each using a unique core at

the sender). Compared to previous scenarios, this scenario induces higher con-

tention for (1) CPU resources such as L3 cache and (2) CPU scheduling among

application threads. We discuss how these changes affect the network process-

ing overheads.

Per-byte data copy overhead increases with increasing flows per-core.

Fig. 2.6(a) shows that throughput-per-core decreases with increase in number

of flows, observing as much as ∼19% drop with 8 flows when compare to the

single-flow case. Fig. 2.6(b) shows that the CPU breakdown does not change

significantly with increasing number of flows, implying that there is no evident

shift in CPU overheads. Fig. 2.6(c) provides some intuition for the root cause of

the throughput-per-core degradation. As number of flows per core increases at

the receiver side, applications for different flows compete for the same L3 cache

space resulting in increased cache miss rate (the miss rate increases from 48% to

78%, as the number of flows goes from 1 to 8.). Among other things, this leads

to increased per-byte data copy overhead and reduced throughput-per-core. As

shown in Fig. 2.6(c), the increase in L3 cache miss rate with increasing flows

correlates well with degradation in throughput-per-core.

Sender-driven nature of TCP precludes receiver-side scheduling. Higher

cache contention observed above is the result of multiple active flows on the

same core. While senders could potentially reduce such contention using care-

ful flow scheduling, the issue at the receiver side is fundamental: the sender-
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Figure 2.7: Linux network stack performance for outcast traffic pattern. (a)
Each column shows throughput-per-sender-core achieved for different number
of flows, that is the maximum throughput sustainable using a single sender
core (we ignore receiver core utilization here). Throughput-per-sender-core in-
creases from 1 to 8 flows, and then decreases as the number of flows increases.
(b) With all optimizations enabled, as the number of flows increases from 1 to
8, data copy overhead increases but does not change much when the number of
flows is increased further. Refer to [49] for receiver-side CPU breakdown. (c) For
1 flow, sender-side CPU is underutilised. Sender-side cache miss rate increases
slightly as the number of flows increases from 8 to 24, increasing the per-byte
data copy overhead, and there is a corresponsing decrease in throughput-per-
core. See §2.3.4 for description.

driven nature of the TCP protocol precludes the receiver to control the number

of active flows per core, resulting in unavoidable CPU inefficiency. We believe

receiver-driven protocols [47, 48] can provide such control to the receiver, thus

enabling CPU-efficient transport designs.
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2.3.4 Increasing Sender Contention via Outcast

All our experiments so far result in receiver being the bottleneck. To evaluate

sender-side processing pipeline, we now use an outcast scenario where a single

sender core transmits an increasing number of flows (1 to 24), each to a unique

receiver core. To understand the efficiency of sender-side processing pipeline,

this subsection focuses on throughput-per-sender-core: that is, the maximum

throughput achievable by a single sender core.

Sender-side processing pipeline can achieve up to 89Gbps per core. Fig. 2.7(a)

shows that, with increase in number of flows from 1 to 8, throughput-

per-sender-core increases significantly enabling total throughput as high as

∼89Gbps; in particular, throughput-per-sender-core is 2.1× when compared to

throughput-per-receiver-core in the incast scenario (§2.3.3). This demonstrates

that, in today’s Linux network stack, sender-side processing pipeline is much

more CPU-efficient when compared to receiver-side processing pipeline. We

briefly discuss some insights below.

The first insight is related to the efficiency of TSO. As shown in Fig. 2.7(a),

TSO in the outcast scenario contributes more to throughput-per-core improve-

ments, when compared to GRO in the incast scenario (§2.3.3). This is due to

two reasons. First, TSO is a hardware offload mechanism supported by the

NIC; thus, unlike GRO which is software-based, there are no CPU overheads

associated with TSO processing. Second, unlike GRO, the effectiveness of TSO

does not degrade noticeably with increasing number of flows since data from

applications is always put into 64KB size skbs independent of the number of

flows. Note that Jumbo frames do not help over TSO that much compared to
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the previous cases as segmentation is now performed in the NIC.

Second, aRFS continues to provide significant benefits, contributing as much

as ∼46% of the total throughput-per-sender-core. This is because, as discussed

earlier, L3 cache at the sender is always warm: while cache miss rate increases

slightly with larger number of flows, the absolute number remains low (∼11%

even with 24 flows); furthermore, outcast scenario ensures that not too many

flows compete for the same L3 cache at the receiver (due to receiver cores dis-

tributed across multiple NUMA nodes). Fig. 2.7(b) shows that data copy con-

tinues to be the dominant CPU consumer, even when sender is the bottleneck.

2.3.5 Maximizing Contention with All-to-All

We now evaluate Linux network stack performance for all-to-all traffic patterns,

where each of x sender cores transmit a flow to each of the x receiver cores, for x

varying from 1 to 24. In this scenario, we were unable to explicitly map IRQs to

specific cores because, for the largest number of flows (576), the number of flow

steering entries requires is larger than what can be installed on our NIC. Never-

theless, even without explicit mapping, we observed reasonably deterministic

results for this scenario since the randomness across a large number of flows

averages out.

Fig. 2.8(a) shows that throughput-per-core reduces by ∼67% going from 1×1

to 24 × 24 flows, due to reduced effectiveness of all optimizations. The benefits

of aRFS drop by ∼64%, almost the same as observed in the one-to-one scenario

(§2.3.2). This is unsurprising, given the lack of cache locality for cores in non-

NIC-local NUMA nodes, and given that cache miss rate is already abysmal (as
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Figure 2.8: Linux network stack performance for all-to-all traffic pattern.
(a) Each column shows throughput-per-core achieved for different number of
flows. With 8×8 flows, the network is fully saturated. Throughput-per-core de-
creases as the number of flows increases. (b) With all optimizations enabled, as
the number of flows increase, the fraction of CPU cycles spent in data copy de-
creases. On the receiver-side, network saturation leads to lower memory man-
agement overhead (due to better page recycling) and higher scheduling over-
head (due to frequent idling and greater number of threads per core.). TCP/IP
processing overhead increases due to smaller skb sizes. The overall receiver-
side CPU utilizations for x= 1 × 1, 8 × 8, 16 × 16 and 24 × 24 are 1, 4.07, 5.56 and
6.98 cores, respectively. See [49] for sender-side CPU breakdown. (c) The frac-
tion of 64KB skbs after GRO decreases as the number of flows increases because
the larger number of flows prevent effective aggregation of received packets.
See §2.3.5 for description.
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discussed in §2.3.2). Increasing the number of flows per core on top of this does

not make things worse in terms of cache miss rate.

Per-flow batching opportunities reduce due to large number of flows. Simi-

lar to the one-to-one case, the network link becomes the bottleneck in this sce-

nario, resulting in fair-sharing of bandwidth among flows. Since there are a

large number of flows (e.g., 24× 24 with 24 cores), each flow achieves very small

throughput (or alternatively, the number of packets received for any flow in a

given time window is very small). This results in reduced effectiveness of op-

timizations like GRO (that operate on a per-flow basis) since they do not have

enough packets in each flow to aggregate. As a result, upper layers receive a

larger number of smaller skbs, increasing packet processing overheads.

Fig. 2.8(c) shows the distribution of skb sizes (post-GRO) for varying number

of flows. We see that as the number of flows increase, the average skb size re-

duces, leading to our argument above about the reduced effectiveness of GRO.

We note that the above phenomenon is not unique to the all-to-all scenario: the

number of flows sharing a bottleneck resource also increase in the incast and

one-to-one scenarios. Indeed, this effect would also be present in those scenar-

ios, however the total number of flows in those cases is not large enough to

make these effects noticeable (max of 24 flows in incast and one-to-one versus

24 × 24 flows in all-to-all).

2.3.6 Impact of In-network Congestion

In-network congestion may lead to packet drops at switches, which in turn im-

pacts both the sender and receiver side packet processing. In this subsection,
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Figure 2.9: Linux network stack performance for the case of a single flow,
with varying packet drop rates. (a) Each column shows throughput-per-core
achieved for a specific packet drop rate. Throughput-per-core decreases as the
packet drop rate increases. (b) As the packet drop rate increases, the gap be-
tween sender and receiver CPU utilisation decreases because the sender spends
more cycles for retransmissions. (c, d) With all optimizations enabled, as the
packet drop rate increases, the overhead of TCP/IP processing and netdevice
subsystem increases. See §2.3.6 for description.

we study the impact of such packet drops on CPU efficiency. To this end, we

add a network switch between the two servers, and program the switch to drop

packets randomly. We increase the loss rate from 0 to 0.015 in the single flow

scenario from §2.3.1, and observe the effect on throughput and CPU utilization

at both sender and receiver.

Impact on throughput-per-core is minimal. As shown in Fig. 2.9(a) the

throughput-per-core decreases by ∼24% as the drop rate is increased from 0 to
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0.015. Fig. 2.9(b) shows that the receiver-side CPU utilization decreases with

increasing loss rate. As a result, the total throughput becomes lower than

throughput-per-core, and the gap between the two increases. Interestingly, the

throughput-per-core slightly increases when the loss rate goes from 0 to 0.00015.

We observe that the corresponding receiver-side cache miss rate is reduced from

48% to 37%. This is because packet loss essentially reduces TCP sending rate,

thus resulting in better cache hit rates at the receiver-side.

Figs. 2.9(c) and 2.9(d) show CPU profiling breakdowns for different loss

rates. With increasing loss rate, at both sender and receiver, we see that the

fraction of CPU cycles spent in TCP, netdevice subsystem, and other (etc.) pro-

cessing increases, hence leading to fewer available cycles for data copy.

The minimal impact is due to increased ACK processing. Upon detailed CPU

profiling, we found increased ACK processing and packet retransmissions to be

the main causes for increased overheads. In particular:

• At the receiver, the fraction of CPU cycles spent in generating and sending

ACKs increases by 4.87× (1.52%→ 7.4%) as the loss rate goes from 0 to 0.015.

This is because, when a packet is dropped, the receiver gets out-of-order TCP

segments, and ends up sending duplicate ACKs to the sender. This con-

tributes to an increase in both TCP and netdevice subsystem overheads.

• At the sender, the fraction of CPU cycles spent in processing ACKs increases

by 1.45× (5.79%→ 8.41%) as the loss rate goes from 0 to 0.015. This is because

the sender has to process additional duplicate ACKs. Further, the fraction of

CPU spent in packet retransmission operations increases by 1.34%. Both of

these contribute to an increase in TCP and netdevice subsystem overheads,
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while the former contributes to increased IRQ handling (which is classified

under “etc.” in our taxonomy).

Sender observes higher impact of packet drops. Fig. 2.9(b) shows the CPU uti-

lization at the sender and the receiver. As drop rates increase, the gap between

sender and receiver utilization decreases, indicating that the increase in CPU

overheads is higher at the sender side. This is due to the fact that, upon a packet

drop, the sender is responsible for doing the bulk of the heavy lifting in terms

of congestion control and retransmission of the lost packet.

2.3.7 Impact of Flow Sizes

We now study the impact of flow sizes on the Linux network stack performance.

We start with the case of short flows: a ping-pong style RPC workload, with

message sizes for both request/response being equal, and varying from 4KB to

64KB. Since a single short flow is unable to bottleneck CPU at either the sender

or the receiver, we consider the incast scenario—16 applications on the sender

send ping-pong RPCs to a single application on the receiver (the latter becoming

the bottleneck). Following the common deployment scenario, each application

uses a long-running TCP connection.

We also evaluate the impact of workloads that comprise of a mix of both

long and short flows. For this scenario, we use a single core at both the sender

and the receiver. We run a single long flow, and mix it with a variable number

of short flows. We set the RPC size of short flows to 4KB.

DCA does not help much when workloads comprise of extremely short flows.
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Figure 2.10: Linux network stack performance for short flow, 16:1 incast traffic
pattern, with varying RPC sizes. (a) Each column shows throughput-per-core
achieved for a specific RPC size. Throughput-per-core increases with increasing
RPC size. For small RPCs, optimizations like GRO do not provide much bene-
fit due to fewer aggregation opportunities. (b) With all optimizations enabled,
data copy quickly becomes the bottleneck. The server-side CPU was completely
utilized for all scenarios. See [49] for client-side CPU breakdown. (c) Unlike
long flows, no significant throughput-per-core drop is observed even when ap-
plication runs on NIC-remote NUMA node core at the server. See §2.3.7 for
description.

Fig. 2.10(a) shows that, as expected, throughput-per-core increases with increase

in flow sizes. We make several observations. First, as shown in Fig. 2.10(b), data

copy is no longer the prominent consumer of CPU cycles for extremely small

flows (e.g., 4KB)—TCP/IP processing overhead is higher due to low GRO ef-

fectiveness (small flow sizes make it hard to batch skbs), and scheduling over-

head is higher due to ping-pong nature of the workload causing applications
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to repeatedly block while waiting for data. Second, data copy not being the

dominant consumer of CPU cycles for extremely short flows results in DCA

not contributing to the overall performance as much as it did in the long-flow

case: as shown in Fig. 2.10(c), while NIC-local NUMA nodes achieve signifi-

cantly lower cache miss rates when compared to NIC-remote NUMA nodes,

the difference in throughput-per-core is only marginal. Third, while DCA ben-

efits reduce for extremely short flows, other cache locality benefits of aRFS still

apply: for example, skb accesses during packet processing benefit from cache

hits. However, these benefits are independent of the NUMA node on which

the applications runs. The above three observations suggest interesting oppor-

tunities for orchestrating host resources between long and short flows: while

executing on NIC-local NUMA nodes helps long flows significantly, short flows

can be scheduled on NIC-remote NUMA nodes without any significant impact

on performance; in addition, carefully scheduling the core across short flows

sharing the core can lead to further improvements in throughput-per-core.

We note that all the observations above become relatively obsolete even with

slight increase in flow sizes—with just 16KB RPCs, data copy becomes the dom-

inant factor and with 64KB RPCs, the CPU breakdown becomes very similar to

the case of long flows.

Mixing long and short flows considered harmful. Fig. 2.11(a) shows that, as

expected, the overall throughput-per-core drops by ∼43% as the number of short

flows colocated with the long flow is increased from 0 to 16. More importantly,

while throughput-per-core for a single long flow and 16 short flows is ∼42Gbps

(§2.3.1) and ∼6.15Gbps in isolation (no mixing), it drops to ∼20Gbps and ∼2.6

Gbps, respectively when the two are mixed (48% and 42% reduction for long
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Figure 2.11: Linux network stack performance for workloads that mix long
and short flows on a single core. (a) Each column shows throughput-per-
core achieved for different number of short flows colocated with a long flow.
Throughput-per-core decreases with increasing number of short flows. (b) Even
with 16 flows colocated with a long flows, data copy overheads dominate, but
TCP/IP processing and scheduling overheads start to consume significant CPU
cycles. The server-side CPU was completely utilized for all scenarios.; refer
to [49] for client-side CPU breakdown. See §2.3.7 for description.

and short flows). This suggests that CPU-efficient network stacks should avoid

mixing long and short flows on the same core.

2.3.8 Impact of DCA

All our experiments so far were run with DCA enabled (as is the case by de-

fault on Intel Xeon processors). To understand the benefits of DCA, we now

rerun the single flow scenario from §2.3.1, but with DCA disabled. Fig. 2.12(a)

shows the throughput-per-core without DCA relative to the scenario with DCA

enabled (Default), as each of the optimizations are incrementally enabled. Un-

surprisingly, with all optimizations enabled, we observe a 19% degradation in

throughput-per-core when DCA is disabled. In particular, we see a ∼50% reduc-

tion in the effectiveness of aRFS; this is expected since disabling DCA reduces
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Figure 2.12: Impact of DCA and IOMMU on Linux network stack perfor-
mance. (a) Each column shows throughput-per-core achieved for different DCA
and IOMMU configurations: Default has DCA enabled and IOMMU disabled.
Either of disabling DCA or enabling IOMMU leads to decrease in throughput-
per-core. (b, c) Disabling DCA does not cause a significant shift in CPU break-
down. Enabling IOMMU causes a significant increase in memory management
overheads at both the sender and the recever. See §2.3.8 and §2.3.9 for descrip-
tion.

the data copy benefits of NIC DMAing the data directly into the L3 cache. The

other benefits of aRFS (§2.3.1) still apply. Without DCA, the receiver-side re-

mains the bottleneck, and we do not observe any significant shift in the CPU

breakdowns at sender and receiver (Figs. 2.12(b) and 2.12(c)).
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2.3.9 Impact of IOMMU

IOMMU (IO Memory Management Unit) is used in virtualized environments

to efficiently virtualize fast IO devices. Even for non-virtualized environments,

they are useful for memory protection. With IOMMU, devices specify virtual

addresses in DMA requests which the IOMMU subsequently translates into

physical addresses while implementing memory protection checks. By default,

the IOMMU is disabled in our setup. In this subsection, we study the impact

of IOMMU on Linux network stack performance for the single flow scenario

(§2.3.1).

The key take-away from this subsection is that IOMMU, due to increased

memory management overheads, results in significant degradation in net-

work stack performance. As seen in Fig. 2.12(a), enabling IOMMU reduces

throughput-per-core by 26% (compared to Default). Figs. 2.12(b) and 2.12(c)

show the core reason for this degradation: memory alloc/dealloc becoming

more prominent in CPU consumption at both sender and receiver (now con-

suming 30% of CPU cycles at the receiver). This is because of two additional

per-page operations required by IOMMU: (1) when the NIC driver allocates

new pages for DMA, it has to also insert these pages into the device’s pagetable

(domain) on the IOMMU; (2) once DMA is done, the driver has to unmap those

pages. These two additional per-page operations result in increased overheads.
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Figure 2.13: Impact of congestion control protocols on Linux network stack
performance. (a) Each column shows throughput-per-core achieved for differ-
ent congestion control protocols. There is no significant change in throughput-
per-core across protocols. (b, c) BBR causes a higher scheduling overhead on the
sender-side. On the receiver-side, the CPU utilization breakdowns are largely
similar. For all cases, receiver-side core is fully utilized for all protocols. See
§2.3.10 for description.

2.3.10 Impact of Congestion control protocols

Our experiments so far use TCP CUBIC, the default congestion control algo-

rithm in Linux. We now study the impact of congestion control algorithms on

network stack performance using two other popular algorithms implemented

in Linux, BBR [57] and DCTCP [42], again for the single flow scenario (§2.3.1).

Fig. 2.13(a) shows that choice of congestion control algorithm has minimal im-
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pact on throughput-per-core. This is because, as discussed earlier, receiver-side

is the core throughput bottleneck in high-speed networks; all these algorithms

being “sender-driven”, have minimal difference in the receiver-side logic. In-

deed, the receiver-side CPU breakdowns are largely the same for all protocols

(Fig. 2.13(c)). BBR has relatively higher scheduling overheads on the sender-side

(Fig. 2.13(b)); this is because BBR uses pacing for rate control (with qdisc) [58],

and repeated thread wakeups when packets are released by the pacer result in

increased scheduling overhead.

2.4 Summary

In this chapter, we have demonstrated that recent adoption of high-bandwidth

links in datacenter networks, coupled with relatively stagnant technology

trends for other host resources (e.g., core speeds and count, cache sizes, etc.),

mark a fundamental shift in host network stack bottlenecks. Using measure-

ments and insights for Linux network stack performance for 100Gbps links, our

study highlights several avenues for future research in designing CPU-efficient

host network stacks, which will be presented in Chapter 4. These are exciting

times for networked systems research—with emergence of Terabit Ethernet, the

bottlenecks outlined in this study are going to become even more prominent,

and it is only by bringing together operating systems, computer networking

and computer architecture communities that we will be able to design host net-

work stacks that overcome these bottlenecks. We hope this chapter will enable a

deeper understanding of today’s host network stacks, and will guide the design

of not just future Linux kernel network stack, but also future network and host

hardware.
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CHAPTER 3

REARCHITECTING HOST NETWORK STACKS FOR TERABIT

ETHERNET

Dedicated, tightly integrated, and static packet processing pipelines in today’s

most widely deployed network stacks preclude them from fully exploiting ca-

pabilities of modern hardware.

In this chapter, we present NetChannel, a disaggregated network stack ar-

chitecture for µs-scale applications running atop Terabit Ethernet. NetChan-

nel ’s disaggregated architecture enables independent scaling and scheduling

of resources allocated to each layer in the packet processing pipeline. Using an

end-to-end NetChannel realization within the Linux network stack, we demon-

strate that NetChannel enables new operating points—(1) enabling a single ap-

plication thread to saturate multi-hundred gigabit access link bandwidth; (2)

enabling near-linear scalability for small message processing with number of

cores, independent of number of application threads; and, (3) enabling isolation

of latency-sensitive applications, allowing them to maintain µs-scale tail latency

even when competing with throughput-bound applications operating at near-

line rate.

3.1 Overview

In discussions about future host network stacks, there is widespread agreement

that, despite its great success, today’s Linux network stack is seriously deficient

along one or more dimensions. Some of the most frequently cited flaws include



its inefficient packet processing pipeline [12, 17, 20, 26, 35], its inability to iso-

late latency-sensitive and throughput-bound applications [11, 59, 60], its rigid

and complex implementation [30], its inefficient transport protocols [47, 61, 62],

to name a few. These critiques have led to many interesting (and exciting!)

debates on various design aspects of the Linux network stack: interface (e.g.,

streaming versus RPC [59, 63–65]), semantics (e.g., synchronous versus asyn-

chronous I/O [65–67]), and placement (e.g., in-kernel versus userspace versus

hardware [20, 30]).

This chapter demonstrates that many deficiencies of the Linux network stack

are not rooted in its interface, semantics and/or placement, but rather in its core

architecture1. In particular, since the very first incarnation, the Linux network

stack has offered applications the same “pipe” abstraction designed around es-

sentially the same rigid architecture:

• Dedicated pipes: each application and/or thread submits data to one end

of a dedicated pipe (sender-side socket) and the network stack attempts to

deliver the data to the other end of that dedicated pipe (receiver-side socket);

• Tightly-integrated packet processing pipeline: each pipe is assigned its own

socket, has its own independent transport layer operations (congestion con-

trol, flow control, etc.), and is operated upon by the network subsystem com-

pletely independently of other coexisting pipes;

• Static pipes: the entire packet processing pipeline (buffers, protocol process-

ing, host resource provisioning, etc.) is determined at the time of pipe cre-

1One exception is per-core performance, which indeed depends on its interface, semantics
and placement. This chapter is not about per-core performance of network stacks—our archi-
tecture is agnostic to the interface, semantics, and placement of network stacks.
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Figure 3.1: NetChannel architecture overview. (a) The Linux network stack
architecture uses dedicated, tightly-integrated, and static packet processing
pipelines. (b) NetChannel disaggregates the packet processing pipeline into
three loosely-coupled layers: applications interact with the network stack using
a Virtual Network System (VNS) layer that enables data movement between ap-
plication buffers and kernel buffers while maintaining correctness of interface
semantics; NetDriver abstracts away the network and remote servers as a multi-
queue device using a channel abstraction, and performs dynamic resource
scheduling for individual channels; NetScheduler performs fine-grained multi-
plexing and demultiplexing (as well as scheduling) of data between VNS buffers
and individual NetDriver channels. More discussion in §3.3.
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ation, and remains unchanged during the pipe lifetime, again, independent

of other pipes and dynamic resources availability at the host.

Such dedicated, tightly-integrated and static pipelines were well-suited for the

Internet and early-generation datacenter networks—since performance bottle-

necks were primarily in the network core, careful allocation of host resources

(compute, caches, NIC queues, etc.) among coexisting pipes was unneces-

sary. However, rapid increase in link bandwidths, coupled with relatively stag-

nant technology trends for other host resources, has now pushed bottlenecks to

hosts [17, 20, 26, 30, 35, 44, 62]. For this new regime, our measurements in §3.2

show that dedicated, tightly-integrated and static pipelines are now limiting

today’s network stacks from fully exploiting capabilities of modern hardware

that supports µs-scale latency and hundred(s) of gigabits of bandwidth. Ex-

perimenting with new ideas has also become more challenging: performance

patches have made the tightly-integrated pipelines so firmly entrenched within

the stack that it is frustratingly hard, if not impossible, to incorporate new pro-

tocols and mechanisms. Unsurprisingly, existing network stacks are already at

the brink of a breakdown and the emergence of Terabit Ethernet will inevitably

require rearchitecting the network stack. Laying the intellectual foundation for

such a rearchitecture is the goal of this chapter.

The NetChannel architecture. NetChannel disaggregates the tightly-integrated

packet processing pipeline in today’s network stack into three loosely-coupled

layers (Fig. 3.1)2.

2In the hindsight, NetChannel is remarkably similar to the Linux storage stack architec-
ture [68, 69]. This similarity is not coincidental—for storage workloads, bottlenecks have al-
ways been at the host, and the “right” architecture has evolved over years to both perform fine-
grained resource allocation across applications, and to make it easy to incorporate new storage
technologies.
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Applications interact with a Virtual Network System (VNS) layer that offers

standardized interfaces, e.g., system calls for streaming and RPC traffic. Inter-

nally, VNS enables data transfer between application buffers and kernel buffers,

while ensuring correctness for the interface semantics (e.g., in-order delivery for

the streaming interface). The core of NetChannel is a NetDriver layer that ab-

stracts away the network and remote servers as a multi-queue device using a

channel abstraction. In particular, the NetDriver layer decouples packet pro-

cessing from individual application buffers and cores: data read/written by an

application on one core can be mapped to one or more channels without break-

ing application semantics. Each channel implements protocol-specific functional-

ities (congestion and flow control, for example) independently, can be dynam-

ically mapped to one of the underlying hardware queues, and the number of

channels between any pair of servers can be scaled independent of number of

applications running on these servers and the number of cores used by indi-

vidual applications. Between the VNS and NetDriver layers is a NetScheduler

layer that performs fine-grained multiplexing and demultiplexing (as well as

scheduling) of data from individual cores/applications to individual channels

using information about individual core utilization, application buffer occu-

pancy and channel buffer occupancy.

NetChannel benefits. The primary benefit of NetChannel is to enable new op-

erating points for existing network stacks without any modification in existing

protocol implementations (TCP, DCTCP, BBR, etc.). These new operating points

are a direct result of NetChannel’s disaggregated architecture: it not only allows

independent scaling of each layer (that is, resources allocated to each layer), but

also flexible multiplexing and demultiplexing of data to multiple channels. We

provide three examples. First, for short messages where throughput is bottle-
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necked by network layer processing overheads [26, 35], NetChannel allows un-

modified (even single-threaded) applications to scale throughput near-linearly

with number of cores by dynamically scaling cores dedicated to network layer

processing. Second, in the extreme case of a single application thread, NetChan-

nel can saturate multi-hundred gigabit links by transparently scaling number of

cores for packet processing on an on-demand basis; in contrast, the Linux net-

work stack forces application designers to write multi-threaded code to achieve

throughput higher than tens of gigabits per second [17]. As a third new operat-

ing point, we show that fine-grained multiplexing and demultiplexing of pack-

ets between individual cores/applications and individual channels enabled by

NetChannel, combined with a simple NetScheduler, allows isolation of latency-

sensitive applications from throughput-bound applications: NetChannel en-

ables latency-sensitive applications to achieve µs-scale tail latency (as much as

17.5× better than the Linux network stack), while allowing bandwidth-intensive

applications to use the remaining bandwidth near-perfectly.

NetChannel also has several secondary benefits that relate to the extensi-

bility of network stacks. For instance, NetChannel alleviates the painful pro-

cess of applications developers manually tuning their code for networking per-

formance (e.g., number of threads, connections, sockets, etc.) in increasingly

common case of multi-tenant deployments3. NetChannel also simplifies exper-

imentation with new designs (protocols and/or schedulers) without breaking

legacy hosts—implementation of a new transport protocol (e.g., dcPIM [61],

3Libraries and/or schedulers outside the network stack (e.g., gRPC) may be able to offer this
benefit to some extent, but in many multi-tenant deployments, they may not have the global vis-
ibility of all applications, system-level metrics like CPU utilization, and in particular, network-
layer metrics like congestion information to effectively offer such a benefit. Nevertheless, our
point here is not that similar benefits cannot be achieved using other systems, but rather that
one of the most widely used network stacks, Linux, is limited by its architecture in offering such
a benefit.
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pHost [47] or Homa [48]) in NetChannel is equivalent to writing a new “de-

vice driver” that realizes only transport layer functionalities without worrying

about functionalities in other layers of the stack like data copy, isolation be-

tween latency-sensitive and throughput-bound applications, CPU scheduling,

load balancing, etc. Thus, similar to storage stacks (that have simplified evo-

lution of new hardware and protocols via device drivers, and have simplified

writing applications with different performance objectives via multiple coexist-

ing block layer schedulers, etc.), NetChannel would hopefully lead to a broader

and ever-evolving ecosystem of network stack designs. To that end, we have

open-sourced NetChannel for our community; the implementation of NetChan-

nel is available at https://github.com/Terabit-Ethernet/NetChannel.

What this chapter is not about. Going back to our starting point, there have

been a lot of interesting and exciting recent debates on various design aspects

of network stacks including their interface, semantics and placement. These are

important discussions, but are tangential to our goals.

First, NetChannel architecture is complementary to recent efforts in improv-

ing per-core (or, per-connection) performance of the Linux kernel network stack

(e.g., zero-copy mechanisms [23, 24], and the new io_uring interface [67])—we

will demonstrate, in §3.5, that applications using the io_uring interface can

also benefit from the NetChannel architecture. Given that single-core CPU

speeds have long been saturated, simple calculations show that saturating

multi-hundred gigabit access link bandwidths would necessitate using multi-

ple cores. NetChannel architecture thus focuses on enabling new design points

to enable applications to share and exploit all host resources (e.g., multiple cores,

NIC queues, multi-hundred gigabit bandwidth, etc.).
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Second, NetChannel architecture is independent of where the network stack

is placed—in-kernel, userspace or hardware; one could very well implement

NetChannel design on top of a microkernel-style userspace stack [15, 16, 20].

We choose the Linux kernel simply because of its maturity, stability, and

widespread deployment; we leave it to future work to explore integration of

NetChannel with userspace and hardware network stacks.

3.2 Motivation

In this section, we demonstrate that the dedicated, tightly-integrated, and static

packet processing pipelines in today’s host network stacks lead to deficiencies

along multiple dimensions. We perform measurements for the Linux network

stack, with various transport designs including TCP and its multi-path exten-

sion MPTCP [70], various system interfaces (standard read/write interface and

io_uring), various packet processing optimization techniques (e.g., packet co-

alescing and packet steering), and different isolation mechanisms. We start by

describing our measurement setup (§3.2.1), and then highlight several limita-

tions of today’s Linux network stack (§3.2.2) using these measurements. Our

key findings are:

• Static and dedicated packet processing pipelines preclude applications from

fully utilizing host CPU resources. Even with all optimizations enabled, a

single TCP long flow fails to saturate a 100Gbps link (achieving a maximum

of ∼60Gbps) even when ample CPU cores are available. We find that, at

∼60Gbps, one of the cores at the receiver side becomes the bottleneck (specif-

ically, the core where the application runs), and today’s network stacks pro-
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vide no way to dynamically scale the compute resources allocated to the

packet processing pipeline during runtime (even if there are other free CPU

cores available). Multipath extensions are no different—while MPTCP en-

ables a single TCP connection to utilize multiple network paths, processing at

the host is still bound to a single CPU core leaving the bottleneck unchanged.

• Static and dedicated packet processing pipelines also preclude Linux from dy-

namically scaling the number of connections when network layer processing

becomes the bottleneck for short messages (e.g., RPCs). MPTCP also fails to

achieve scalability for network layer processing of short messages due to the

same reason as above.

• Tightly-integrated nature of packet processing pipelines lead to poor perfor-

mance isolation when Latency-sensitive (L-apps) and Throughput-bound (T-

apps) applications are co-located. When L-apps and T-apps share a core, to-

day’s network stacks provide no mechanism to steer L-app packet process-

ing and T-app packet processing to different cores—this results in high tail

latency for L-apps due to head-of-line blocking; we observe as much as 37×

increase in L-apps tail latency during such contention.

3.2.1 Measurement Setup

We set up a testbed using two servers directly connected with a 100Gbps link

so as to push bottlenecks to the host network stack. Each server has 4 NUMA

nodes with 8 CPU cores per-NUMA node. Direct Cache Access (Intel’s Data

Direct I/O (DDIO) [44]) is enabled and configured to use the maximum possible

number of L3 cache ways. We use Linux kernel v5.6 for TCP and MPTCP kernel
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Mechanism Description

TSO (Tx) TCP Segmentation Offload. Offloads the segmentation of
“big” packets (up to 64KB) into frames to the NIC.

GRO (Rx)
Generic Receive Offload. Aggregates MTU-sized frames
into a “big” packet (up to 64KB) before passing them to the
TCP/IP layer.

Jumbo Frames
(Tx/Rx) Using larger MTU size (9000B)

aRFS (Rx) accelerated Receive Flow Steering. Steers received frames
to the core that the application is running on.

DCA (Rx) Direct Cache Access. Allows NICs to DMA receiving
frames directly to the processor’s L3 cache.

Table 3.1: Packet processing optimization techniques used in many modern network
stacks.

v0.95 for MPTCP4. To emulate multi-pathing of the MPTCP kernel over a single

100Gbps link, we increase the number of subflows manually.

To understand performance bottlenecks for long flows and short messages,

we use a long-lived TCP connection for transmitting stream data and 4KB

RPCs respectively, avoiding extra overheads of creating/destroying connec-

tions. When measuring the performance interference between T-apps and L-

apps, for T-apps, we generate long flow traffic similar to Iperf [19], and for

L-apps, we use a ping-pong style RPC workload (message size for both re-

quest/response is 4KB).

We measure total throughput of long flows and short messages; to better un-

derstand performance bottlenecks, we also perform CPU profiling and classify

kernel functions into different categories as in prior work [17]. We also measure

throughput-per-core of T-apps and P99.9 tail latency of L-apps for co-located

4The full implementation of MPTCP has been maintained separately from the upstream ker-
nel using different version numbers. As of now, the most recent version of MPTCP kernel is
based on Linux kernel 4.19 [70]. Efforts to push MPTCP into the upstream kernel are still in
progress [71].
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T-apps and L-apps.

3.2.2 Limitations of Existing Kernel Stack

We use three measurement scenarios to showcase limitations of today’s Linux

network stack.

(1) Static and dedicated pipeline⇒ lack of scalability for long flows. We run

an application that transmits a stream of data through a single TCP socket us-

ing standard read/write system calls. Fig. 3.2(a) shows the network stack is

unable to saturate the 100Gbps link for this application, even after enabling var-

ious prevalent offload and aggregation-based optimizations like Jumbo Frames,

TSO, GRO, aRFS (see Table 3.1), new upcoming interfaces like io_uring, and

multiple subflows for MPTCP. Jumbo Frames and TSO/GRO help reduce the

per-packet processing overheads since they allow the processing pipeline to op-

erate on larger size packet buffers (or skbs). aRFS allows NICs to steer received

frames to the application core; along with DCA, it generally improves through-

put by performing data copy directly from the L3 cache when applications are

running on the cores in the same NUMA node as the NIC. For a more detailed

discussion of these optimizations and their impact, refer to [17].

To dig deeper, we perform CPU profiling as shown in Fig. 3.2(b); our re-

sults suggest that, despite DCA being enabled, the core bottleneck is data copy

from kernel to userspace at the receiver-side consistent with observations in re-

cent work [17]. Data copy is performed on the application core that executes

the recv() system calls. Additionally, with aRFS enabled, interrupts (IRQs) are

steered to the application core, and hence other network layer processing such
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as TCP/IP, Net-device subsystem (netdev), etc., also happens on the application

core.

We find that by disabling aRFS and manually steering interrupts to a differ-

ent core on the same NUMA node as the application, the network stack achieves

slightly higher throughput of ∼60Gbps (Fig. 3.2(a) second bar). Part of the pro-

cessing (TCP/IP, netdev, etc.) is now offloaded to a different CPU core, hence

freeing up more CPU cycles for data copy on the application core.

Even with Linux’s recent io_uring [67] feature, with aRFS and with man-

ual NUMA-local IRQ steering (bars 3 and 4 in Fig. 3.2(a) respectively), we find

that the total throughput does not improve—in particular, data copy remains

the dominant overhead (bars 3 and 4 in Fig. 3.2(b))5. In fact, we observe a slight

degradation in total throughput with io_uring because it dispatches some of

the socket receive calls to a separate kernel thread which contends with the ap-

plication thread for the common socket lock.

With MPTCP, we observe that using aRFS gives the best possible through-

put. Independent of the number of subflows, all the processing happens on

the core where the application runs. The total throughput is reduced when the

number of subflows increases due to the increase in the amount of network layer

processing. Without aRFS, interrupts for subflows get mapped to arbitrary CPU

cores potentially on different NUMA nodes resulting in poor throughput6.

Overall, independent of the configuration used, the packet processing

5While io_uring enables “zero-copy” of the metadata associated with socket operations,
payload data is copied as usual. While there is ongoing work on exploiting io_uring for zero-
copy send [72], we are not aware of any work on zero-copy receive (which is usually the bottle-
neck [17]).

6We were not able to manually steer subflow IRQs to different cores in the same NUMA
using 4-tuples, because the kernel determines the source ports of subflows at runtime.
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Figure 3.2: Static pipeline of the Linux network stack (using both TCP and
MPTCP) fails to saturate 100Gbps access link bandwidths since it is unable to
scale compute resources allocated to packet processing pipelines. More discus-
sion in §3.2.2.

pipeline of today’s network stack is static (both data copy and network layer

processing are bound to a single core). As a result, it is unable to dynamically

scale resources allocated to a packet processing pipeline to utilize the full net-

work link bandwidth, despite the availability of idle CPU cores. Even if data

copy were to be eliminated (via zero-copy mechanisms [23,24]), simple calcula-

tions show that the network stack will not be able to saturate emerging multi-

hundred gigabit links using a single core, as the packet processing pipeline is
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Figure 3.3: In today’s Linux network stack, sender-side network layer process-
ing (including protocol and netdevice subsystem processing) overheads are the
bottleneck for short message processing. More discussion in §3.2.2.

still bound to one core. The requirement of multi-core processing is, thus, in-

evitable.

(2) Static and dedicated pipeline⇒ lack of scalability for short message pro-

cessing. We run a client application which sends 4KB RPC requests to a server.

The sustained throughput using a single socket is roughly ∼ 9.88Gbps. We

find that the sender-side is the bottleneck. The sender-side CPU breakdown

in Fig. 3.3, shows that TCP/IP processing and netdevice subsystem processing

are the dominant overheads, accounting for almost a half of the total CPU cy-

cles used. Once again, all of this processing is bound to a single CPU core and is

unable to dynamically scale even if additional CPU cores are available—a result

of the static nature of today’s network stack.

We tried this experiment using io_uring as well, but observed no improve-

ment in throughput (achieving a maximum of 8.5Gbps; there is a small degra-

dation in throughput [73, 74])). This is unsurprising given that system call cost

and context-switch overheads (included in scheduling)—the main overheads

that io_uring is supposed to minimize—account for a very tiny fraction of CPU
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cycles in this scenario, as seen in Fig. 3.3. MPTCP cannot help in this case for

two reasons. First, since sender-side network layer processing still happens on

the application core, running multiple subflows on a single core does not help.

Second, MPTCP cannot dynamically scale the number of subflows at runtime

based on the CPU load.

While the application could overcome the network layer processing bottle-

neck by sending data over multiple sockets from different threads, it is difficult

for application developers to estimate how many sockets they will need, espe-

cially in multi-tenant and virtualized deployments [17]. Moreover, the appli-

cation and userspace libraries linked to the application (e.g., gRPC) have lim-

ited information about congestion in the network and utilization of CPU cores,

making it hard to make informed packet scheduling decisions across sockets.

An ideal networking stack should dynamically and transparently allocate new

connections on idle cores and multiplex packets to different connections so that

the application can achieve higher throughput without manually managing the

number of connections. Further, this should happen only when the throughput

is limited by CPU, not by congestion control, to maintain protocol-side proper-

ties such as TCP-friendliness.

(3) Tightly-integrated pipeline ⇒ lack of performance isolation. To under-

stand performance interference between L-apps and T-apps when they are co-

located, we run 1 L-app and 8 T-apps on the same NUMA node (number of ap-

plications > number of cores). We do not pin the applications to specific cores,

thus allowing the CPU scheduler to dynamically move applications across all of

the cores within the NUMA node. We enable all optimizations including aRFS.

Fig. 3.4(a) (Linux) shows the tail latency (99.9th percentile) of the L-app and
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Figure 3.4: Tightly integrated pipeline of the Linux network stack fails to
provide µs-scale isolation for L-apps when they are co-located with T-apps. L-
apps can suffer from extremely high tail latency. More discussion in §3.2.2.

the overall throughput achieved, when the applications are run in isolation (Iso-

lated) versus when they are co-located (Interference). In the latter case, the

L-app experiences a 37× inflation in tail latency, relative to when it is run in

isolation. This dramatic inflation in tail latency is due to the tight integration

of network layer processing with the application cores. Since there are more

applications than cores, it is inevitable that at certain points in time, the L-app

will share a CPU core with one or more T-apps. When this happens the ker-

nel runs the corresponding network layer processing for both applications on
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the same core, hence causing interference—the network layer processing for the

L-app can get blocked behind network layer processing for the T-app, causing

inflation in tail latency.

Using prioritization techniques to prioritize L-app traffic does not solve the

problem. Prioritization can be performed at two layers today—(1) transmission

of L-app packets can be prioritized at the qdisc [75] layer on the sender-side

using the pfifo_fast scheduling policy [76]; and, (2) the L-app process can be

prioritized at the CPU scheduler (on both sender and receiver-side) by setting

the niceness value of L-app’s processes to −20 (the highest CPU scheduling pri-

ority in Linux’s CFS scheduler [77]). Despite applying both of these prioriti-

zation techniques, as shown in Fig. 3.4(a) (Linux + Prioritization), we observe

no noticeable improvement in the tail latency of the L-app. qdisc prioritization

does not help because there is not much queueing at the qdisc layer to begin

with. This is because of the TCP Small Queue (TSQ) [78] feature which limits

the number of in-flight bytes at the qdisc layer in order to minimize bufferbloat.

CPU scheduling prioritization does not help for two reasons. First, a majority

of the network layer processing happens in IRQ threads (Rx packet processing

at the receiver-side, and TSQ processing at the sender-side) whose scheduling is

not impacted by the priority of application threads. Second, even if there were a

mechanism to prioritize IRQ processing, it would not fully solve the problem, as

IRQ processing is non-preemptive in nature; thus, L-apps could still get blocked

by T-apps.

Since prioritization mechanisms are not effective, the only way to achieve

isolation is by separating the network layer processing for L-apps and T-

apps onto separate cores. However, due to tight-integration of the process-
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ing pipeline with application cores, today’s network stack is unable to do so—

indeed, as shown in Fig. 3.4(b), the average per-core CPU utilization is only

40%–50% in the above experiments. An ideal network stack should allow sepa-

ration and isolation of network layer processing for L-apps and T-apps, even if

the two classes of applications are sharing the same CPU core.

3.3 NetChannel Design

As discussed earlier, the dedicated, tightly-integrated, and static packet process-

ing pipelines in today’s Linux network stack leads to several limitations. To re-

solve this, NetChannel disaggregates the pipeline by rearchitecting the network

stack into three layers: (1) Virtual Network System (VNS) layer, (2) NetDriver

layer, and (3) NetScheduler layer.

The VNS layer (discussed in §3.3.1) provides interfaces to applications (e.g.,

socket, RPC) while ensuring correctness of the interface semantics. These inter-

faces are “virtual”, since unlike in today’s Linux network stack, they only buffer

data from/to applications and are disaggregated from the rest of the packet

processing pipeline. At the bottom, the NetDriver layer (discussed in §3.3.2)

abstracts the network as a multi-queue “device” through a generic channel ab-

straction exposed to the upper layer. Decoupling application interfaces (in the

VNS layer) from channels (in the NetDriver layer), enables flexible and fine-

grained multiplexing/demultiplexing and scheduling of data between the two.

This multiplexing/demultiplexing is controlled by the NetScheduler layer (dis-

cussed in §3.3.3) which enables pluggable schedulers that can be designed to

achieve various objectives including dynamic scaling of the packet processing
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pipeline across CPU cores, and performance-isolation of L-apps from T-apps.

3.3.1 Virtual Network System (VNS) Layer

The VNS layer offers application interfaces while maintaining the necessary

semantics of each interface. In order to support unmodified applications,

NetChannel supports the standard POSIX socket interface through virtual sock-

ets. From the application’s perspective, these virtual sockets have the exact same

semantics as normal sockets, i.e., reliable in-order delivery between endpoints.

As usual, applications can interact with these sockets using standard system

calls (e.g., connect, send, recv, epoll) or even using io_uring [67]. While VNS

also supports other interfaces such as RPCs, we focus our discussion here on the

socket interface since it has the strongest requirements in terms of semantics.

Ensuring correctness of interface semantics. Each virtual socket internally

maintains a pair of Tx and Rx buffers. When applications send/receive data

to/from virtual sockets, data is copied from/to userspace to/from the virtual

socket Tx/Rx buffers. Data in the virtual socket Tx buffer is forwarded to

the NetDriver layer for transmission, while data received over the network

is forwarded from the NetDriver layer to the virtual socket Rx buffer. While

we can rely on the network transport (underlying the channels in NetDriver

layer) to guarantee reliable delivery, VNS needs to do some book-keeping to

ensure in-order delivery of bytes between a pair of virtual sockets. This is

because, as we will discuss in §3.3.2, data from a virtual socket can be multi-

plexed/demultiplexed to/from more than one underlying channel in the Net-

Driver layer, in which case, it is possible for data to arrive in the virtual socket
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API method Arguments Description

create() metadata Create a new channel instance

destroy() channel Destroy a channel instance

enqueue()
channel,

List<packet buffer>,
metadata

Enqueue data for transmission through a given channel.
Given as a list of packet buffers along with metadata.

dequeue() channel, count
Dequeue upto count bytes of data received through a given channel.

Returns a list of packet buffers along with metadata.

Table 3.2: Summary of core channel API calls that need to be implemented by
network drivers. For a more exhaustive list, see [79]. The metadata argument
in both create and enqueue calls is opaque from the perspective of the channel
interface, and can be used to encode transport-specific information such as host
address and port number.

Rx buffer out-of-order. To that end, on the sender side, VNS embeds a se-

quence number (§3.4) in each data packet representing its order within the vir-

tual socket stream. On the receiver-side, it can then use these sequence numbers

to ensure data is delivered in-order—packets are buffered in the virtual socket

Rx buffer until they are next in-sequence.

Decoupling data copy from application threads. VNS also maintains per-core

worker threads for data copy between userspace and the kernel (for interfaces

that require it). Data copy operations for virtual sockets can be divided into

smaller parts (each with a target buffer address and length) and distributed

across worker threads of multiple cores. This enables utilizing multiple cores to

scale data copy processing for throughput-bound applications with long flows.

3.3.2 NetDriver Layer

The NetDriver layer abstracts away the network and remote servers as a multi-

queue device and exposes channels which are analogous to queues of this de-
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vice. In this subsection, we discuss the channel abstraction, NetDriver mecha-

nisms for decoupling network layer processing from sockets, NetDriver mecha-

nisms to enable ease of integration of new network transport designs, and other

details relevant to managing buffer overflow and avoiding head-of-line block-

ing.

Channel abstraction. In NetDriver, each channel consists of a pair of Tx/Rx

queues, and an instance of an independent network layer processing pipeline

of an underlying network transport that implements functionalities such as re-

liable delivery, flow control, and congestion control (for example, in the case

of TCP, a channel would map to a single underlying TCP connection). The

channel API (Table 3.2) is simple and generic enabling it to encapsulate a

wide range of transports. In particular, it can support both connection-oriented

stream-based transports (e.g., TCP, DCTCP [42]), and connection-less message-

oriented transports (pHost [47], Homa [48] or dcPIM [61]). For example, in the

case of the former, upon a channel API create call, a connection can be created.

Subsequently, arbitrary chunks of data in the stream can be transmitted through

channel enqueue calls. In the case of the latter, no connection will be created

during channel creation, and individual messages can directly be transmitted

through the channel enqueue call (passing destination information in the meta-

data).

Decoupled network layer processing. channels in NetDriver are decoupled

from instances of virtual interfaces (e.g., virtual sockets) in the VNS layer. This

architectural choice enables decoupling network layer processing from individual

sockets and cores that applications use—NetDriver allows creating one or more

channels between a given pair of servers, independent of the number of ap-
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plications running on these servers, and the number of sockets/cores used by

these applications. Further, it allows flexible fine-grained multiplexing and de-

multiplexing of data from/to virtual socket to/from channels. This enables

several interesting operating points. For instance, if one channel has high CPU

load, the subsequent data from a virtual socket can be dynamically scheduled

to different channels. Such dynamic multiplexing can enable utilizing multi-

ple cores to scale network layer processing, while also enabling utilization of

multiple network paths similar to MPTCP.

Integrating new transport designs. Given that NetDriver is an abstraction of a

multi-queue device, integrating a network transport is now equivalent to writ-

ing a new device driver. This essentially makes it easier to integrate and exper-

iment with new protocols. Protocol developers do not need to worry about im-

plementing cumbersome APIs related to socket interfaces (e.g., epoll) and things

like data copy processing, instead focusing only on implementing their own

network protocol logic plus simple APIs of the channel abstraction as shown in

Table 3.2.

Piggybacking on transport-level flow control. To avoid Rx buffer overflow of

virtual sockets, NetDriver naturally piggybacks on the flow control of the un-

derlying transport protocol(s) through backpressure, without having to intro-

duce a new flow control protocol. When a virtual socket’s Rx buffer becomes

full, VNS stops receiving data from channels, leading to accumulation of data

in the channel’s Rx buffer, eventually triggering the flow control mechanism of

the underlying transport. VNS resumes receiving data when the virtual socket’s

Rx buffer is available again as the application reads the data.
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Figure 3.5: Resolving HoL blocking. HoL blocking can occur when multiple
apps share the same channel. In this example, App1 and App2 use the yellow
channel to send data. App2 does not promptly read data from its socket buffer
on the receiver side, causing HoL blocking of App1’s packets. To resolve this,
1) on the sender side, NetScheduler removes the mapping between sockets and
channels when it detects a queue buildup, preventing more packets from being
pushed to the channel; 2) on the receiver side, NetScheduler, with full infor-
mation on buffer occupancy, identifies App2 as the cause and resizes its buffer,
allowing packets from the yellow channel to be sent to sockets, thus resolving
the HoL blocking. More discussion in §3.3.2.

Resolving HoL blocking. Since it is possible for a single channel to be shared

by multiple virtual sockets, we need to handle corner-case scenarios where one

virtual socket causes head-of-line (HoL) blocking for the others, leading to the

performance degradation. This can happen if an application does not read data

from a virtual socket for an extended period of time (e.g., because it is malfunc-

tioning, or busy with other work).

To resolve head-of-line (HoL) blocking, NetScheduler stops sending packets

when it observes a queue buildup on a shared channel. On the receiver side,

NetChannel dynamically scales virtual socket buffers using information from

NetScheduler, which has full visibility of both virtual socket and channel buffer

occupancy. This allows NetScheduler to trigger the resizing of the socket buffer

causing the HoL blocking, similar to how today’s network stacks dynamically
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scale buffers. After expanding the virtual socket buffer, packets in the channel

can be forwarded to the sockets, addressing HoL blocking.

For example, as shown in Fig 3.5, two applications share the yellow chan-

nel, and App2 does not read data from its virtual socket promptly, causing HoL

blocking of App1’s packets. In this case, NetChannel expands App2’s buffer to

accommodate more packets from the channel’s buffer. One important point is

that the increase in App2’s socket buffer size is bounded, typically at a maxi-

mum of 2x the channel buffer size, assuming all packets in the channel on both

sender and receiver sides belong to App2. After resizing, packets in the channel

are transmitted to the receiver’s virtual socket buffer, resolving HoL blocking.

Once NetScheduler observes the queue is empty on the sender side, it can re-

sume transmission by assigning the applications to separate channels, prevent-

ing future HoL blocking.

3.3.3 NetScheduler Layer

NetScheduler performs three main tasks: (1) fine-grained multiplexing and

scheduling of application data to channels to achieve various performance ob-

jectives, (2) scaling number of channels between a pair of hosts dynamically,

and (3) scheduling of data copy requests across per-core data copy worker

threads at fine-grained timescales. Given its location in the kernel, NetSched-

uler has visibility into various kinds of metrics such as the occupancy level of

queues, number of virtual sockets, CPU core utilization, application priority,

and so forth. We note that our goal is not to design scheduling policies, but

rather, to provide mechanisms to enable different policies. One can implement

any scheduling policy within our NetScheduler framework. Here, we discuss
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some simple example policies that enable new operating points. The specific

policies used in our current implementation are discussed in §3.4.

Dynamic scheduling of application data to channels. At any given point, there

can be one or more active channels between a pair of hosts. Upon receiving

data from an application, NetScheduler determines the target channel to send

the data on at per-skb granularity using a configurable scheduling policy (e.g.,

round-robin, shortest-queue-first, etc.) to achieve fine-grained load balancing

across channels. As we show in §3.5, this enables scaling network layer pro-

cessing across cores.

Dynamic scaling and placement of channels. NetScheduler scales the number

of channels to a given remote host dynamically by monitoring scheduling met-

rics at coarse-grained timescales. An example policy is to increase the number

of channels when the average CPU utilization across channel workers is per-

sistently high. Further, NetScheduler also controls the mapping of channels

to cores. This can be exploited to achieve performance isolation by separat-

ing channels for L-app and T-app processing and mapping these channels to

different cores. As we show in §3.5, this enables performance isolation when

L-apps and T-apps are co-located.

Dynamic scheduling of data copy requests. NetScheduler schedules data copy

requests generated by virtual sockets over multiple per-core worker threads at

per-request granularity. It uses the cores in the same NUMA node as the appli-

cation core to avoid cross-NUMA data copy overheads. As we show in §3.5, this

makes it possible to selectively parallelize data copy across cores for T-apps.
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3.4 NetChannel Implementation

We have implemented NetChannel in Linux kernel v5.6. Throughout the imple-

mentation, our goal was to re-use existing kernel network stack infrastructure

as much as possible. To that end, most of our current implementation re-uses

existing code in the kernel. In this section, we discuss some interesting details

of our NetChannel implementation.

Application interfaces. At VNS, our goal is to support unmodified appli-

cation interfaces. We thus implement the virtual socket interface by adding

a new flag— IPPROTO_VIRTUAL_SOCK in the standard socket interface to cre-

ate virtual sockets. Applications can specify NetChannel-related attributes via

setsockopt() — e.g., the SO_APP_TYPE attribute determines the application

class (e.g., latency-sensitive, throughput-bound, etc.). The RPC interfaces are

similar to those in prior work [80].

Virtual socket connections. The virtual socket interface uses the following pro-

cedure to set up connections (similar to existing socket interface): clients initiate

connect system calls and the corresponding listen sockets on the remote host

accept the connection requests and return a new socket per request (accept sys-

tem call). Underneath, virtual sockets perform a handshake using NCSYN and

NCSYN_ACK control packets to set up a connection. Note that since the underlying

channels in NetDriver already provide reliability, virtual sockets only require a

2-way handshake, unlike TCP’s 3-way handshake.

NetChannel headers. Since one virtual socket can use multiple channels

and/or multiple virtual sockets can share the same channel, NetChannel needs
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to uniquely identify packets to their corresponding virtual sockets. To do

so, NetChannel wraps an additional header atop of the packet payload. The

NetChannel header consists of (1) a pair of virtual socket source and desti-

nation ports, to uniquely identify virtual socket-level connections; (2) virtual

socket sequence number, to perform packet reordering when multiple channels

are used; and (3) packet type, to distinguish data packets from control packets

(e.g., NCSYN and NCSYN_ACK). Use of NetChannel header allows virtual sockets

to work in conjunction with underlying channels without any modifications in

the channel’s header.

Reducing page allocation overheads for DMA. To reduce page allocation over-

heads during DMA (caused by get_page_from_freelist() calls), our imple-

mentation sets up a dedicated page pool for each receive queue of NIC. While a

large page pool size may help reduce the page allocation overhead, it may also

increase L3 cache miss rate due to DCA effects [17]. We use 256 as the default

page pool size. We found that it is sufficient to achieve reasonably low page

allocation overhead while still maintaining a low DCA cache miss rate. Even

for a NIC with 256 receive queues, the memory overhead of maintaining these

page pools is 256×256×4KB = 256MB, which is negligible relative to the DRAM

sizes of modern servers.

Scheduling policy. Our current NetScheduler implementation adopts a simple

round-robin scheduling policy for scheduling of (1) application data to chan-

nels and (2) data copy requests to workers. For (1), we use only channels of

the same type as the application (i.e., L-app or T-app channels). To avoid over-

loading already busy channels/workers, we exclude those which have queue

occupancy higher than a certain threshold. Through simple sensitivity analysis,
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Figure 3.6: NetChannel enables Linux to achieve new operation points (left-
right and top-bottom, a-d). (a, b) For a single long flow, it can saturate 100Gbps
(a), by utilizing multiple cores for data copy processing (b). (c) It enables
near-linear scaling of short-message throughput with an increasing number of
channels. (d) It is able to provide performance isolation even when an L-app is
co-located with 8 T-apps over 8 cores. More discussion in §3.5.2.

we found 2MB and 640KB to be good thresholds for (1) and (2) respectively, and

use these by default for our evaluation (§3.5).
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3.5 NetChannel Evaluation

In this section, we demonstrate that NetChannel is able to achieve new oper-

ating points that were previously unachievable by the Linux network stack,

in particular, saturating a 200Gbps link using a single socket, increasing short

message throughput almost linearly with cores, and achieving µs-scale tail la-

tency for L-apps even when they are co-located with T-apps. We describe our

evaluation setup in §3.5.1. We use the same experimental scenarios in §3.2 and

provide insights on how NetChannel alleviates the previously discussed limi-

tations of today’s Linux network stack (§3.5.2), followed by an investigation of

the overheads of our current NetChannel prototype (§3.5.3). Next, we demon-

strate NetChannel’s effectiveness with real-world applications (§3.5.4), and fi-

nally show that it can scale to Terabit Ethernet (§3.5.5).

Before diving in, we make three important notes. First, NetChannel sup-

ports unmodified applications (§3.3), and one can run any application on top

of it. In order to focus on the network stack, we use lightweight applications

which perform minimal compute similar to prior works [16, 17], and addition-

ally demonstrate NetChannel’s effectiveness with two real world applications

(Redis and SPDK). Second, our goal is not to show that NetChannel beats state-

of-the-art network stack performance in absolute terms, but rather to demon-

strate the benefits enabled by NetChannel architecture and understand its over-

heads. In order to do so, we naturally compare our prototype with the baseline

system that it is implemented on top of (Linux). And we will discuss in §4,

NetChannel’s ideas could very well be implemented on top of userspace stacks,

hence making it complementary to these systems. Third, while parallelizing
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parts of the packet processing pipeline across multiple cores, NetChannel natu-

rally introduces some (although relatively minimal) CPU overheads. Since the

processing speed of a single CPU core has long since been saturated, utilizing

multiple cores is essential. Hence, paying a small cost in per-core overheads to

enable this is worthwhile.

3.5.1 Evaluation Setup

Hardware setup. Our experimental testbed consists of two servers connected

directly via a 100Gbps link. Each server has a 4 NUMA nodes with 8 cores per

NUMA node (Intel Xeon Gold 6234 3.3GHz CPU), 32KB/1MB/25MB L1/L2/L3

caches, 384GB DRAM and a 100Gbps NVIDIA Mellanox ConnectX-5 NIC. Both

servers run Ubuntu 20.04 (Linux kernel v5.6). By default, we enable TSO, GRO,

Jumbo Frames (9000B), aRFS, and Dynamically-Tuned Interrupt Moderation

(DIM) [81] while disabling hyperthreading and IOMMU, since doing so maxi-

mizes performance. Direct Cache Access (Intel DDIO) is enabled and configured

to use the maximum possible number of L3 cache ways for all experiments.

Evaluated workloads. Similar to §3.2, T-apps generate long-lived flows

(i.e., stream traffic) and L-apps generate ping-pong style 4KB RPC re-

quests/responses. Both of these applications perform minimal application-

level processing, ensuring that the network stack is the bottleneck. We con-

sider both scenarios of standard read/write system calls, and io_uring [67]. In

all experiments, we only cores in the NUMA node where the NIC is attached.

We also evaluate NetChannel with two real-world applications, Redis [6], and

SPDK [82].
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Figure 3.7: Understanding NetChannel overheads (left-right and top-bottom,
a-d). NetChannel incurs minimal throughput-per-core overheads while emu-
lating today’s Linux pipeline (a), and while scaling data copy processing across
cores (b). (c) throughput-per-core does not change independent of the number
of channels. (d) it is able to isolate L-app latency with minimal throughput-per-
core degradation. More discussion in §3.5.3.

Performance metrics. We measure performance in terms of throughput for T-

apps and P99.9 tail latency for L-apps. In order to quantify CPU efficiency and

understand overheads, we use throughput-per-core which is measured as the

total throughput / CPU utilization (we take the maximum of the client-side and

server-side CPU utilization when computing CPU utilization).
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3.5.2 New operating points

We now demonstrate how NetChannel enables three new operating points us-

ing the experimental scenarios from §3.2.2.

Scalability for long flows. In the extreme case of a T-app using a single TCP

socket, Linux fails to saturate the 100Gbps link due to its static packet processing

pipeline (§3.2.2), despite the availability of CPU cores. As shown in Fig. 3.6(a),

while using standard read/write system calls, NetChannel enables Linux to sat-

urate the 100Gbps link by making use of multiple cores (Fig. 3.6(b)). This is be-

cause NetChannel allows independent scaling of data copy processing (which

is the bottleneck in this scenario) at VNS, so that NetScheduler can use two data

copy worker threads on two different cores while maintaining one channel at

NetDriver layer. In the io_uring case as well, we find that NetChannel enables

Linux to nearly saturate 100Gbps by utilizing multiple cores (Fig. 3.6(a, b)).

Scalability for short messages. The second scenario in §3.2.2 considers a short

message scenario with 4KB RPCs where network layer processing overheads

are more dominant. To push these overheads to an extreme, we disable through-

put optimization techniques including TSO/GRO and Jumbo Frames (both with

and without NetChannel for a fair comparison). NetChannel enables Linux to

dynamically scale network layer processing by allowing data from a single vir-

tual socket to be multiplexed across multiple channels (§3.3). To demonstrate

this, we measure throughput in this scenario while increasing the number of

channels (each running on a separate core). With standard read/write sys-

tem calls, we find that throughput increases near-linearly with the addition of

channels (Fig. 3.6(c)). We discuss overheads in §3.5.3. With io_uring as well,
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we see that throughput increases with the addition of channels (Fig. 3.6(c)). For

the same number of channels, we observe slightly lower throughput than with

read/write syscalls due to io_uring having extra overheads on the application

core.

Enabling performance isolation. In the third scenario that captures perfor-

mance interference, we run 8 T-apps and one L-app over 8 cores. We focus on

the case of standard read/write system calls. Since io_uring does not improve

per-application performance, as observed in previous experiments, we omit it

in the interest of brevity. As discussed in §3.2.2, with today’s Linux network

stack, the L-app suffers from high tail latency inflation due to network layer

processing interference between T-apps and the L-app. NetChannel enables

isolating network layer processing for L-apps from T-apps, even if they share

the same core, by decoupling virtual sockets from channels— channels can be

flexibly mapped to different cores. In this experiment, NetScheduler uses up to

4 channels for T-apps and a single channel for L-app as the L-app generates

low load. These channels are assigned to different cores in order to separate

network layer processing for the T-apps from that for the L-app. As shown in

Fig. 3.6(d), we see that with NetChannel, Linux is able to achieve 17.5× lower tail

latency for L-app, hence demonstrating that NetChannel can indeed enable per-

formance isolation. We also repeated this experiment with 8 L-apps instead of

1, and confirmed that benefits remain — NetChannel enables Linux to achieve

9.5× lower tail latency in this case.
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3.5.3 Understanding NetChannel Overheads

We now investigate the overheads incurred by NetChannel in the process of

enabling new operating points.

Overheads of emulating the Linux network stack. To better understand the

overheads that NetChannel introduces, we emulate a single packet processing

pipeline of today’s Linux stack using NetChannel. To this end, we use a single

application thread, and a single channel thread, while placing everything on

the same core. For a fair comparison, Linux uses a single application thread,

and we enable aRFS for both systems to ensure that the Rx packet processing

is also run on the same core. In Fig. 3.7(a), we observe that NetChannel shows

a minimal ∼ 7% reduction in throughput-per-core (the server-side core is the

bottleneck for both systems).

Overheads of scaling data copy processing. In order to understand the over-

heads of scaling data copy processing, we compare NetChannel and Linux us-

ing scenarios where they are both able to saturate the 100Gbps link, and com-

pare the total CPU utilization. For NetChannel, we use 2 data copy threads and

1 channel thread running on separate cores (similar to Fig. 3.6(a)). For Linux,

we run 3 long-lived TCP connections over 3 cores to fully saturate the 100Gbps

link (this is the minimum number needed to saturate 100Gbps). We find that

NetChannel incurs a minimal 12% reduction in throughput-per-core as shown

in Fig. 3.7(b). The main reason for this is because the application buffers are

not warm in the L1 cache of the cores where the data copy worker threads run,

leading to higher L1 cache misses during data copy.
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Figure 3.8: NetChannel enables Linux to achieve 2.4× higher throughput for
Redis. More discussion in §3.5.4.

Overheads of scaling network layer processing. To understand overheads in-

curred by NetChannel while scaling network layer processing, we measure the

throughput-per-core from Fig. 3.6(c), as the number of channels increases from

1 to 4. As shown in Fig. 3.7(c), throughput-per-core remains the same inde-

pendent of the number of channels. Compared to Linux (default), there is a

relatively small degradation in throughput-per-core. We found that the rea-

son for this overhead is that NetScheduler needs to wake up channel threads

more frequently as each channel thread goes to sleep after processing each short

message (4KB). Such overheads could be reduced if we perform batching at the

NetScheduler layer.

Overheads of achieving performance isolation. Now we consider the perfor-

mance isolation scenario in Fig. 3.6(d), where 8 T-apps and 1 L-app are running

over 8 cores, to understand the overheads of achieving performance isolation.

Fig. 3.7(d) shows the throughput-per-core of T-apps in this experiment. We see

that NetChannel incurs only a minimal throughput-per-core reduction (12%) in

the Interference case, while achieving more than an order-of-magnitude reduc-

tion in tail latency (Fig. 3.6(d)).
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3.5.4 Real-world applications with NetChannel

Redis with NetChannel. We now evaluate NetChannel with Redis [6], a

well-known in-memory key-value database. We use the standard YCSB work-

load [83], with 95%/5% read/write ratio. Each RPC request is 4KB in size. We

use 8 threads on the client side to fully utilize all cores on a single NUMA node.

Since the workload generates small-sized messages, we use the same configu-

ration used in Fig. 3.6(c).

Fig. 3.8 shows the latency-throughput curve with and without NetChannel.

We see that NetChannel enables Linux to achieve 2.4× higher throughput for

Redis. This is because NetChannel enables scaling network layer processing

across cores through multiple channels. (In this experiment, NetChannel in-

creases the number of channels to 4.). In terms of tail latency, NetChannel in-

curs slightly higher scheduling and reordering latency as the virtual socket of

the Redis server is mapped to multiple channels. While this latency overhead

is more visible at low load, it is ∼160µs.

SPDK-based remote storage stack with NetChannel. There has been signif-

icant recent work on designing remote storage stacks in the disaggregation

context [22, 69, 84, 85]. To evaluate this scenario, we use SPDK [82], a widely-

deployed userspace storage stack. In particular, we use SPDK’s NVMe-over-

TCP stack [84] that uses the Linux TCP/IP stack by default to access a remote

storage device over the network. We use an experimental setup similar to prior

work [69] — in our two-machine testbed, the SPDK client (we use the standard

SPDK perf benchmark tool [86]) runs on one of the machines and issues I/O

requests to a remote in-memory storage device (RAM block device) exposed by
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the SPDK server running on the other machine. Both the SPDK client and server

application threads run on a single CPU core each, and use a single TCP con-

nection for data transfer. We use a sequential 100% read workload with large

I/Os (2MB) in order to maximize throughput.

Fig. 3.9 shows the total throughput that SPDK achieves with and without

NetChannel. With NetChannel, we use a single channel and vary the number

of data copy threads. Even with a single data copy thread, using NetChannel al-

ready leads to a 1.19× increase in SPDK throughput as network layer processing

is offloaded onto a separate core. Increasing the number of data copy threads

leads to significant improvements in throughput as data copy is parallelized

across multiple cores. With 3 data copy threads, NetChannel enables SPDK to

achieve 2.06× higher throughput and saturate the 100Gbps link with a single

TCP connection. Relative to the Fig. 3.6(a) experiment, SPDK requires one extra

data copy thread to saturate the link bandwidth. This is due to the SPDK client

using larger buffers and additional application-level delays for processing re-

sponses before data copy. Both of these factors contribute to higher L3 cache

miss rate as analyzed in prior work [17], and hence result in reduced data copy

efficiency.

3.5.5 NetChannel with Terabit Ethernet

We now demonstrate that NetChannel scales to link speeds beyond 100Gbps,

i.e., Terabit Ethernet [87]. For this we use a different testbed which has two

servers directly connected by a 200Gbps link. Each server has 2 NUMA nodes

(Intel Xeon Gold 6354 3.0GHz CPUs) and a Mellanox ConnectX-6 NIC. Each

NUMA-node has 18 cores and 39MB of L3 cache. We re-ran the Fig. 3.6(a) ex-
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Figure 3.10: NetChannel enables Linux to saturate 200Gbps link bandwidth us-
ing a single socket. More discussion in §3.5.5.

periment of a single T-app with a single socket on this new setup. As shown

in Fig. 3.10, NetChannel enables Linux to saturate the 200Gbps link bandwidth

using a single application thread. To do so, it uses 2 channels and 3 data copy

threads. Unlike in the previous setup (Fig. 3.6(a)), a single channel is no longer

sufficient to saturate the link, as a single core is not able to perform all of the

network layer processing at the required rate. We find that the throughput-per-

core achieved by Linux both without and with NetChannel (Fig. 3.10) increases

on the new testbed (by 12% and 15% respectively) due to improved data copy

efficiency as a result of larger L3 cache size.
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3.6 Related Work

We discuss work that is most closely related to NetChannel’s goals.

Linux network stack improvements. Linux now has support for TCP zero copy

send [23] and receive [24]. However, as discussed in prior work [17], these

mechanisms are far from offering a silver bullet. Zero-copy receive (which bears

similarities to the older zero-copy mechanisms in Solaris [88]) in particular re-

quires special hardware support (header-data split) in the NIC [24], and has

several other limitations [89], which limits widespread adoption. Nevertheless,

even the small subset of applications which use these zero-copy mechanisms

can still benefit from network layer processing scalability, performance isola-

tion, and other benefits enabled by NetChannel. NetChannel is complementary

to many existing Linux kernel optimization efforts especially for small mes-

sages, through new interfaces [26, 27], system call optimizations [38, 39], and

optimized socket implementations [25].

Recent work [17] has reported an in-depth analysis of overheads in the Linux

network stack. NetChannel’s design is motivated by observations and insights

from this work. i10 [22] and blk-switch [69] are recent enhancements to the

Linux storage stack. They make use of the unmodified Linux network stack for

remote storage access, and could reap the benefits of NetChannel if run on top

of it.

Userspace network stacks. There has been a significant amount of recent work

on designing userspace network stacks [11–13, 15, 16, 20, 35, 64, 90–94], many of

which are built on top of low-level frameworks such as DPDK and netmap [95].
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We will discuss in §4 that NetChannel’s architecture has the potential to provide

benefits to userspace network stacks as well.

Hardware network stacks. There has also been a lot of recent work on both par-

tially and fully offloading host network stacks to hardware [30, 43, 96, 97]. At a

conceptual level, FlexTOE [97] is the closest to NetChannel. Similar to NetChan-

nel, it enables parallelization of the packet processing pipeline. However, it

focuses on parallelizing a specific transport protocol implementation (TCP), un-

like NetChannel which considers the end-to-end packet processing pipeline

from the application to the NIC, and enables parallelization in a transport-

agnostic manner. In §4, we will discuss that NetChannel’s architectural ideas

can be applied to hardware-offloaded network stacks as well.

Alternative solutions beyond the network stacks. There are also solutions be-

yond the network stack aimed at improving application performance, such as

the RPC libraries [63, 98]. While it is possible to achieve some of NetChannel’s

benefits using libraries and/or schedulers outside the network stack (e.g., gRPC

can multiplex RPCs across different underlying connections), there are two lim-

itations of such an approach. First, decoupling and independently scaling dif-

ferent parts of the packet processing pipeline (e.g., data copy and network layer

processing) requires support from the network stack, thus necessitating mod-

ifications similar to NetChannel. Second, in multi-tenant deployments, these

libraries do not have global visibility of all applications, system-level metrics

like CPU uti- lization, and in particular, network-layer metrics like congestion

information to effectively make multiplexing decisions. Thus, the network stack

is the right place to realize the NetChannel architecture and its benefits
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3.7 Summary

We have demonstrated that today’s host network stacks are unable to fully

exploit the capabilities of modern hardware due to their dedicated, tightly

integrated, and static packet processing pipelines. Our core contribution is

NetChannel, a new disaggregated host network stack architecture that rearchi-

tects the stack into three loosely-coupled layers. We have implemented

NetChannel in the Linux kernel, and evaluated it to demonstrate that it enables

new operating points that were previously unachievable, including saturation

of a Terabit ethernet link with a single application core, independent scaling of

network layer processing, and performance isolation between latency-sensitive

and throughput-bound applications.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

Datacenters now support Terabit Ethernet. However, due to the slowdown of

Moore’s Law and the end of Dennard scaling, the growth in server process-

ing capacity (core speeds × core count) has been stagnant. These two trends

have led to new, practically important and technically challenging, questions

at the intersection of operating systems and computer networking: while net-

work hardware can support µs-scale latency and hundreds of gigabits of band-

width, designing end-host network stacks that can leverage these capabilities

efficiently has become a key open research problem.

The first contribution of this dissertation is to build an in-depth understand-

ing the core challenges hindering existing host network stacks from fully lever-

aging modern network hardware. Our study indicates: 1) With the rapid in-

crease in network link bandwidth, data movement overheads (e.g., moving data

from memory to CPUs) become the bottleneck for scaling single-core perfor-

mance; and with existing network stacks, we need multiple cores to exploit the

capabilities of Terabit network hardware. 2) However, using multiple cores fur-

ther degrades the CPU efficiency. This is because host resources such as CPU

caches and access link bandwidth are contended, leading to performance degra-

dation.

The second contribution of this dissertation is to introduce NetChannel —a

new network stack architecture that enables host network stacks to leverage net-

work hardware without requiring application modifications. NetChannel dis-

aggregates network stacks into multiple loosely-coupled layers, allowing each

layer to scale and schedule across multiple cores independently. Using an end-
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to-end NetChannel realization within the Linux network stack, we demonstrate

that NetChannel enables new operating points—(1) enabling a single applica-

tion thread to saturate multi-hundred gigabit access link bandwidth; (2) en-

abling near-linear scalability for small message processing with an increasing

number of cores, independent of the number of application threads; and, (3)

enabling isolation of latency-sensitive applications, allowing them to maintain

µs-scale tail latency even when competing with throughput-bound applications

operating at near-line rate.

4.1 Future Work

This dissertation serves as an initial step toward the goal of efficiently exploiting

the capabilities of Terabit network hardware. This thesis leaves open several

interesting directions of future research, and we will describe each direction in

detail below.

4.1.1 Improving CPU efficiency

First, to improve the CPU efficiency of network packet processing, as observed

in Chapter 2, it is crucial to reduce not only packet processing overheads but

also data movement overheads.
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4.1.1.1 Reducing data movement overheads

Designing efficient and dynamic direct cache access (DCA) pipelines. Ex-

isting optimizations allow NICs to transfer data to the L3 cache. However,

as shown in Chapter 2, the increasing bandwidth-delay product outpaces the

growth of cache size due to the rapid increase in bandwidth. This results in

packets being evicted to memory, thereby degrading performance. To reduce

cache contention, we aim to explore the benefits of not just an efficient, but

also a more dynamic DMA pipeline. The current DMA datapaths are static:

all DMAed data are treated equally, entering the cache regardless of whether

this leads to a performance improvement. For instance, certain applications do

not need high network performance, and some may not promptly read data

from their network stack buffer. In such cases, it may not be beneficial to push

packets to the cache. In the future, we aim to develop an intelligent scheme

for dynamically transferring packets to CPU caches or memory. This may in-

clude: 1) designing an application interface that allows applications to specify

their performance requirements (e.g., whether packets need to be directed to

the CPU cache via DCA), such as reusing/modifying the socket priority sys-

tem calls [99]; 2) tracking performance counter values (e.g., L3 cache miss rates)

and OS-level information (e.g., receiver socket buffer occupancy). Combining

these values can help decide whether packets of specific applications should go

to memory or cache. Once the decision has been made, we can utilize existing

NICs’ flow tables (e.g., those used in aRFS), where the key is the flow identifi-

cation number (such as a five-tuple), and the value provides a hint to indicate

whether the corresponding packets should be forwarded to memory or cache.

This hint can be piggybacked in the corresponding PCIe transactions, allowing
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CPUs to make DMA/DCA decisions [56].

Designing CPU-efficient transport protocols. Making the DMA/DCA data

path more dynamic and efficient only mitigates the cache contention. For ex-

ample, it does not address cache contention when multiple applications need

their packets DCAed to the cache. To resolve the contention, an efficient host

resource orchestration mechanism is needed. In this context, it is worthwhile

to reconsider the role of transport protocols. Transport design has traditionally

focused on resolving bottlenecks on the network side (e.g. achieving high net-

work throughput and reducing queuing delay in the switch buffers). As the

bottleneck has shifted from the network to the host, it is worthwhile to explore

the potential of designing protocols to orchestrate host resources by consider-

ing not just traditional metrics like Round-trip-time (RTT) and packet drops,

but also host resource availability, such as available cache size for DCA. For ex-

ample, to reduce host resource contention, while not sacrificing performance,

protocols could limit the number of active flows within a short period, rather

than allowing all flows to share host resources equally. Recent receiver-driven

protocols [61] have the potential to enable such fine-grained orchestration of

both sender and receiver resources.

4.1.1.2 Reducing packet processing overheads

Long flow and short message processing are bottlenecked by different parts of

the processing pipeline and may need different optimization techniques to im-

prove CPU efficiency. Based on Chapters 2 and 3, transport layer processing is

the main bottleneck for processing short messages. For long flows, as discussed

in Chapter 2, we find that the bottleneck is on the receiver side and processing
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has two main overheads: 1) data copy processing, and 2) NIC driver processing,

with its associated memory management overheads typically related to allocat-

ing memory space for packet metadata (e.g., skb) and the payload in the NIC

driver.

Saving CPU cycles for short message processing is a well-explored problem.

One possible direction is to reduce the number of packets being processed on

CPUs. For example, hardware offloading of transport layer processing elimi-

nates the need for network packet processing by CPUs, as packets are processed

in hardware [30].

On the other hand, saving CPU cycles for long flow processing is an impor-

tant and interesting direction to explore in the future. Simply offloading the

transport layer to hardware will not provide CPU efficiency; even with hard-

ware offloading, data copying still occurs to transfer data from the kernel buffer

to the application buffer, and memory allocation/deallocation overheads still

exist for managing payload in the kernel buffer. Here, several interesting direc-

tions are worth exploring:

Achieving zero-copy processing with HW/SW co-design. Data copying over-

heads can be reduced by improving data movement efficiency. However, to

completely resolve this bottleneck, exploring the design of achieving zero-copy

processing could be beneficial. Existing solutions for achieving zero-copy ei-

ther focus on the sender side [23, 84, 100], require changes in application-layer

modifications [24], or involve reimplementing the entire network and transport

protocols in user space [101]. However, the receiver side is the main bottleneck,

with data copy being the primary bottleneck, as discussed in Chapter 2. Design-

ing zero-copy mechanisms on the receiver side that do not require application
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modifications or reimplementation of network protocols is an interesting direc-

tion to explore. Achieving this with HW/SW co-design is one potential way.

As the first step, our most recent work [102] demonstrates that using the clean-

slate approach—designing new NIC hardware—can achieve zero-copy process-

ing with minimal application modifications. In addition, zero-copy processing

can also eliminate the memory allocation overheads for payloads in the netde-

vice subsystem, as there is no need to allocate separate memory space for packet

payloads.

Reducing NIC driver processing overheads with CPU-efficient protocols

One main contributor to NIC driver processing overheads is constructing pack-

ets from the driver’s descriptors and allocating memory space for packet meta-

data. Fundamentally, reducing the number of packets being processed can

reduce this overhead. While offloading the transport layer to hardware can

achieve such a reduction, batching can also achieve similar effects without of-

floading the entire transport layer. Unlike short messages that do not generate

enough packets to benefit from batching, long flow processing can effectively

utilize batching to reduce overhead. However, existing batching optimization

techniques, such as LRO/GRO, become ineffective with an increasing number

of flows due to packet interleaving among flows, as shown in Chapter 2. To

resolve this issue, existing approaches [103] deliberately delay packets on the

receiver side, allowing for packet batching inside the network stack. However,

setting an appropriate threshold or timeout for triggering packet reception is

challenging due to the bursty nature of traffic patterns inside datacenters. In

fact, besides improving data movement efficiency, CPU-efficient transport pro-

tocols also have the potential to reduce NIC driver processing overheads with
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batching. The protocols can proactively control the traffic pattern through a

receiver-driven scheme [47,61,104], allowing the receiver to proactively control

the number of packets that will be received in the near future. This enables the

batching scheme to set an appropriate threshold or timeout, thereby improving

the effectiveness of batching.

4.1.2 Multi-core resource management

Given today’s stagnant CPU speed and the rapid increase in network band-

width, even after improving CPU efficiency, multiple cores are needed to fully

exploit network hardware capabilities. Multi-core resource management re-

mains crucial to meet application performance requirements. In Chapter 3, we

show that rearchitecting host network stacks with NetChannel provides bene-

fits even with simple policies. In the future, extending NetChannel to work in

more realistic deployment scenarios would be valuable. This will allow us to

fully realize the potential of NetChannel in diverse and complex environments.

Designing versatile NetScheduler policies. The NetScheduler layer in

NetChannel’s architecture provides the mechanisms to implement different

scheduling and placement policies. We have demonstrated in §3.5 that even

with simple policies, NetChannel can achieve significant benefits. In fact, in

practice, application performance may degrade due to various reasons (e.g. net-

work congestion and CPU contention). Based on network and host performance

metrics (e.g. RTT, number of retransmitted packets, queuing occupancy of chan-

nels, CPU usage and so on), the scheduler needs to identify the root cause of

degradation and react differently at runtime (e.g. creating a new channel that
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will go through a different path over the network or simply moving the channel

to an idle CPU core). To fully utilize the NetChannel architecture, one promis-

ing direction for further research is designing versatile NetScheduler policies

that can adapt to different scenarios, and meet application performance require-

ments in real-time.

Extending NetChannel to virtualized environments Additionally, extend-

ing NetChannel to virtualized environments, including VMs and containers,

is another exciting avenue for exploration. Virtualized environments are in-

creasingly prevalent in modern datacenter infrastructures. Besides the benefits

demonstrated in Chapter 3, integrating NetChannel with these environments

also offers efficient resource utilization for cloud providers to manage the net-

work demands of different VMs/containers. Recent technology allows VMs to

hot plug more CPU resources at runtime, eliminating the need for users to over-

provision resources when allocating VMs [105]. Integrating NetChannel with

this recent technology enables efficient scheduling of host resources to satisfy

the network demands of VMs at runtime.

Applying NetChannel architecture to other network stacks. In Chapter 3,

we have realized the NetChannel architecture within the Linux network stack.

However, NetChannel’s architecture and design ideas can be applied to host

network stacks in general—even those placed in userspace and/or hardware.

Microkernel-style userspace stacks [11,15,20] would be ideal candidates for im-

plementing NetChannel’s ideas. For example, while TAS [16] decouples the

packet processing pipeline from application cores, it can benefit from addi-

tionally disaggregating different parts of the packet processing pipeline similar

to NetChannel. NetChannel’s ideas can also be applied to hardware network
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stacks. For example, in SoC-based smartNICs [106], NetChannel’s design could

enable transport-agnostic parallelization of processing across cores, which is

even more important in this context since these devices typically contain a large

number of wimpy cores [97, 106]. Further, by disaggregating the host network

stack, NetChannel could enable easier integration of partial hardware offloads

that offload different parts of the packet processing pipeline (e.g., I/OAT [43]

for data copy, and Tonic [30] fo the transport layer) into Linux or other software

network stacks.

4.1.3 Understanding host network stack latency

This dissertation discusses factors hindering network stacks from achieving

high performance in terms of throughput and CPU efficiency. However, achiev-

ing low latency is also a critical factor for applications. Several recent studies

have shown that the Linux network stack suffers from millisecond-scale tail la-

tency [11–16]. This deficiency has led the networking, systems, and computer

architecture communities to explore clean-slate solutions, including userspace

stacks [11–13, 15, 16, 20, 35, 64, 91, 92] and specialized host network hardware

[14, 30, 107]. One interesting direction for future exploration is to perform de-

tailed profiling to understand the root causes of high tail latency in traditional

host network stacks. Doing so can help us build an in-depth understanding of

the root causes behind high latency in the Linux network stack, potentially ben-

efiting the design of future network stacks, operating systems, and host hard-

ware for low-latency networking.
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